Elementary Functions

Elementary Functions QuickStart Sample (Managed C++)

Illustrates the use of the elementary functions implemented by the 
Elementary class  in Managed Extensions for C++.

C# code VB.NET code Back to QuickStart Samples

// This is the main project file for VC++ application project // generated using an Application Wizard.#include "stdafx.h"#using <mscorlib.dll>

using namespace System;
// We use many classes from the Extreme.Mathematics namespace.using namespace Extreme::Mathematics;

// Illustrates the use of the elementary functions implemented// by the ElementaryFunctions class in the Extreme.Mathematics.Curve namespace of // Extreme Numerics.NET.int _tmain()
    // This QuickStart sample deals with elementary     // functions, implemented in the ElementaryFunctions class.    //    // ElementaryFunctions functions    //    // Evaluating Log(1+x) directly causes significant    // round-off error when x is close to 0. The    // Log1PlusX function allows high precision evaluation    // of this expression for values of x close to 0:    Console::WriteLine("Logarithm of 1+1e-12");
    Console::WriteLine("  Math.Log: {0}", __box(Math::Log(1+1e-12)));
    Console::WriteLine("  Log1PlusX: {0}", __box(ElementaryFunctions::Log1PlusX(1e-12)));

    // In a similar way, Exp(x) - 1 has a variant,     // ExpXMinus1, for values of x close to 0:    Console::WriteLine("Exponential of 1e-12 minus 1.");
    Console::WriteLine("  Math.Exp: {0}", __box(Math::Exp(1e-12) - 1));
    Console::WriteLine("  ExpMinus1: {0}", __box(ElementaryFunctions::ExpMinus1(1e-12)));

    // The hypotenuse of two numbers that are very large    // may cause an overflow when not evaluated properly:    Console::WriteLine("Hypotenuse:");
    double a = 3e200;
    double b = 4e200;
    Console::Write("  Simple method: ");
    try    {
        double sumOfSquares = a*a + b*b;
    catch (OverflowException *)
    Console::WriteLine("  ElementaryFunctions::Hypot: {0}",
        __box(ElementaryFunctions::Hypot(a, b)));

    // Raising numbers to integer powers is much faster    // than raising numbers to real numbers. The    // overloaded Pow method implements this:    Console::WriteLine("2.5^19 = {0}", __box(ElementaryFunctions::Pow(2.5, 19)));
    // You can raise numbers to negative integer powers    // as well:    Console::WriteLine("2.5^-19 = {0}", __box(ElementaryFunctions::Pow(2.5,-19)));

    Console::Write("Press Enter key to exit...");
    return 0;