Optimization In Multiple Dimensions in F# QuickStart Sample
Illustrates the use of the multi-dimensional optimizer classes in the Numerics.NET.Optimization namespace for optimization in multiple dimensions in F#.
This sample is also available in: C#, Visual Basic, IronPython.
Overview
This QuickStart sample demonstrates how to use various optimization algorithms in Numerics.NET to find minima of multidimensional functions.
The sample shows how to use several different optimization methods:
-
BFGS (Broyden-Fletcher-Goldfarb-Shanno) method - A quasi-Newton method that approximates the Hessian matrix to find minima efficiently. The sample demonstrates both manual gradient specification and automatic differentiation.
-
Conjugate Gradient methods - Including Fletcher-Reeves and Polak-Ribiere variants, which are particularly effective for large-scale problems.
-
Powell’s method - A derivative-free method that can work when gradients are unavailable or difficult to compute.
-
Nelder-Mead simplex method - A robust method that can handle discontinuous functions, though it converges more slowly than gradient-based methods.
The sample uses the classic Rosenbrock function as a test case, showing how to specify objective functions, gradients, and initial guesses. It demonstrates both manual gradient implementation and the use of automatic differentiation. For each method, it shows how to configure the optimizer and interpret the results, including solution quality and performance metrics.
The code
//=====================================================================
//
// File: optimization-in-nd.fs
//
//---------------------------------------------------------------------
//
// This file is part of the Numerics.NET Code Samples.
//
// Copyright (c) 2004-2025 ExoAnalytics Inc. All rights reserved.
//
//=====================================================================
module OptimizationInND
// Illustrates unconstrained optimization in multiple dimensions
// using classes in the Numerics.NET.Optimization
// namespace of Numerics.NET.
#light
open System
open Numerics.NET
// The optimization classes reside in the
// Numerics.NET.Optimization namespace.
open Numerics.NET.Optimization
// The license is verified at runtime. We're using a 30 day trial key here.
// For more information, see:
// https://numerics.net/trial-key
let licensed = Numerics.NET.License.Verify("your-trial-key-here")
//
// Objective function
//
// The objective function must be supplied as a
// Func<Vector, double> delegate. This is a method
// that takes one Vector argument and returns a real number.
// The famous Rosenbrock test function.
let fRosenbrock(x : Vector<float>) =
let p = 1.0 - x.[0]
let q = x.[1] - x.[0]*x.[0]
p*p + 105.0 * q*q
// The gradient of the objective function can be supplied either
// as a MultivariateVectorFunction delegate, or a
// MultivariateVectorFunction delegate. The former takes
// one vector argument and returns a vector. The latter
// takes a second vector argument, which is an existing
// vector that is used to return the result.
// Gradient of the Rosenbrock test function.
let gRosenbrock (x : Vector<float>) (f : Vector<float>) =
let p = 1.0 - x.[0]
let q = x.[1] - x.[0]*x.[0]
f.[0] <- -2.0*p - 420.0*x.[0]*q
f.[1] <- 210.0*q
f
// The initial values are supplied as a vector:
let initialGuess = Vector.Create(-1.2, 1.0)
// The actual solution is [1, 1].
//
// Quasi-Newton methods: BFGS and DFP
//
// For most purposes, the quasi-Newton methods give
// excellent results. There are two variations: DFP and
// BFGS. The latter gives slightly better results.
// Which method is used, is specified by a constructor
// parameter of type QuasiNewtonMethod:
let bfgs = QuasiNewtonOptimizer(QuasiNewtonMethod.Bfgs)
bfgs.InitialGuess <- initialGuess
bfgs.ExtremumType <- ExtremumType.Minimum
// Set the ObjectiveFunction:
bfgs.ObjectiveFunction <- Func<Vector<float>,double> fRosenbrock
// Set either the GradientFunction or FastGradientFunction:
bfgs.FastGradientFunction <- Func<Vector<float>,Vector<float>,Vector<float>> gRosenbrock
// The FindExtremum method does all the hard work:
let bfgsResult = bfgs.FindExtremum()
printfn "BFGS Method:"
printfn " Solution: %O" bfgs.Extremum
printfn " Estimated error: %A" bfgs.EstimatedError
printfn " # iterations: %d" bfgs.IterationsNeeded
// Optimizers return the number of function evaluations
// and the number of gradient evaluations needed:
printfn " # function evaluations: %d" bfgs.EvaluationsNeeded
printfn " # gradient evaluations: %d" bfgs.GradientEvaluationsNeeded
//
// Conjugate Gradient methods
//
// Conjugate gradient methods exist in three variants:
// Fletcher-Reeves, Polak-Ribiere, and positive Polak-Ribiere.
// Which method is used, is specified by a constructor
// parameter of type ConjugateGradientMethod:
let cg = ConjugateGradientOptimizer(ConjugateGradientMethod.PositivePolakRibiere)
// Everything else works as before:
cg.ObjectiveFunction <-
fun x ->
let p = 1.0 - x.[0]
let q = x.[1] - x.[0]*x.[0]
p*p + 105.0 * q*q
cg.FastGradientFunction <- Func<Vector<float>,Vector<float>,Vector<float>> gRosenbrock
cg.InitialGuess <- initialGuess
let cgResult = cg.FindExtremum()
printfn "Conjugate Gradient Method:"
printfn " Solution: %O" cg.Extremum
printfn " Estimated error: %A" cg.EstimatedError
printfn " # iterations: %d" cg.IterationsNeeded
printfn " # function evaluations: %d" cg.EvaluationsNeeded
printfn " # gradient evaluations: %d" cg.GradientEvaluationsNeeded
//
// Powell's method
//
// Powell's method is a conjugate gradient method that
// does not require the derivative of the objective function.
// It is implemented by the PowellOptimizer class:
let pw = PowellOptimizer()
pw.InitialGuess <- initialGuess
// Powell's method does not use derivatives:
pw.ObjectiveFunction <- Func<Vector<float>,double> fRosenbrock
let pwResult = pw.FindExtremum()
printfn "Powell's Method:"
printfn " Solution: %O" pw.Extremum
printfn " Estimated error: %A" pw.EstimatedError
printfn " # iterations: %d" pw.IterationsNeeded
printfn " # function evaluations: %d" pw.EvaluationsNeeded
printfn " # gradient evaluations: %d" pw.GradientEvaluationsNeeded
//
// Nelder-Mead method
//
// Also called the downhill simplex method, the method of Nelder
// and Mead is useful for functions that are not tractable
// by other methods. For example, other methods
// may fail if the objective function is not continuous.
// Otherwise it is much slower than other methods.
// The method is implemented by the NelderMeadOptimizer class:
let nm = NelderMeadOptimizer()
// The class has three special properties, that help determine
// the progress of the algorithm. These parameters have
// default values and need not be set explicitly.
nm.ContractionFactor <- 0.5
nm.ExpansionFactor <- 2.0
nm.ReflectionFactor <- -2.0
// Everything else is the same.
nm.SolutionTest.AbsoluteTolerance <- 1e-15
nm.InitialGuess <- initialGuess
// The method does not use derivatives:
nm.ObjectiveFunction <- Func<Vector<float>,double> fRosenbrock
let nmResult = nm.FindExtremum()
printfn "Nelder-Mead Method:"
printfn " Solution: %O" nm.Extremum
printfn " Estimated error: %A" nm.EstimatedError
printfn " # iterations: %d" nm.IterationsNeeded
printfn " # function evaluations: %d" nm.EvaluationsNeeded
printf "Press Enter key to exit..."
Console.ReadLine() |> ignore