Tensor Operations in F# QuickStart Sample
Illustrates how to perform operations on tensors in F#.
View this sample in: C# Visual Basic
// Illustrates how to perform operations on tensors.
open System
// Tensor classes reside in the Numerics.NET.Tensors
// namespace.
open Numerics.NET.Tensors
open Numerics.NET.FSharp
// The license is verified at runtime. We're using
// a 30 day trial key here. For more information, see
// https://numerics.net/trial-key
let licensed = Numerics.NET.License.Verify("64542-18980-57619-62268")
// For details on the basic workings of Tensors
// objects, including constructing, copying and
// cloning tensors, see the BasicTensors QuickStart
// Sample.
//
// Let's create some tensors to work with.
let t1 = Tensor.CreateRange(6.0).Reshape(3, 2)
Console.WriteLine($"t1 = {t1}")
// [[ 0, 1 ],
// [ 2, 3 ],
// [ 4, 5 ]]
let t2 = Tensor.CreateRange(6.0).PowInPlace(2).Reshape(3, 2)
Console.WriteLine($"t2 = {t2}")
// [[ 0, 1 ],
// [ 4, 9 ],
// [16, 25 ]]
// These will hold results.
Tensor<double> t
//
// Tensor arithmetic
//
// The Tensor<T> class defines operator overloads for
// most operations, including addition, subtraction,
// and multiplication.
// Addition:
Console.WriteLine($"Tensor arithmetic:")
Console.WriteLine($"t1 + t2 = {t1 + t2}")
// Subtraction:
Console.WriteLine($"t1 - t2 = {t1 - t2}")
// Multiplication and division are element-wise:
t = t1 * t2
Console.WriteLine($"t1 * t2 = {t1 * t2}")
t = t2 / t1
Console.WriteLine($"t2 / t1 = {t2 / t1}")
// For each of these, equivalent static methods exist in the Tensor class
// that offer more options. Here, we add t1 and t2 into an existing tensor:
Tensor.Add(t1, t2, result: t)
Console.WriteLine($"t1 + t2 = {t}")
// You can pass in a mask to limit where the operation is performed.
// Other elements are left unchanged:
Tensor.Add(t1, t2, result: t, mask: t1 % 2 == 0)
Console.WriteLine($"t1 + t2 = {t}")
// There's an InPlace method on the tensor itself:
t1.AddInPlace(t2)
Console.WriteLine($"t1 += t2 = {t1}")
t1.SubtractInPlace(t2)
Console.WriteLine()
//
// Other functions
//
// The static Tensor class contains methods for computing
// mathematical functions for all elements of a tensor.
// For example:
t = Tensor.Sin(t1)
Console.WriteLine($"sin(t1) = {t}")
//
// Broadcasting
//
// Broadcasting is a mechanism for performing operations on
// tensors of different shapes. Dimensions with only one element
// are expanded to match the number of elements along that dimension
// in other operands.
let tRow = Tensor.CreateRange(2.0).Reshape(1, 2) * 10
let tColumn = Tensor.CreateRange(3.0).Reshape(3, 1)
Console.WriteLine($"tRow = {tRow}")
Console.WriteLine($"tColumn = {tColumn}")
// The sum of the row and column vector is a 2D tensor:
t = tRow + tColumn
Console.WriteLine($"tRow + tColumn = {t}")
// When tensors have different ranks, the dimensions are aligned
// from the end. In other words: dimensions of length 1 are inserted
// to make the ranks match. The following works because tRow,
// with shape (2) is reshaped to (1, 2) and then broadcast to (3, 2):
tRow = Tensor.CreateRange(2.0) * 10
t = tRow + tColumn
Console.WriteLine($"tRow + tColumn = {t}")
//
// Manipulating tensor shapes
//
// Sometimes it's useful to manually insert dimensions of length 1
// in order to line up the dimensions for broadcasting. This is done
// with the InsertAxis method:
tRow = tRow.InsertAxis(0); // tRow has shape (1, 2)
// Other times, axes have to be rearranged. There are several methods
// that perform this operation, such as Transpose, SwapAxes,
// and MoveAxes.
//
// Conditional operations
//
// Adding the optional 'where' argument performs the operation only
// when the corresponding element in the where tensor is true.
t1.AddInPlace(t2, mask: t1 % 2 == 1)
Console.WriteLine($"Add t2 to t1 where t1 is odd = {t1}")
// The mask tensor is also broadcast:
Tensor.Add(t1, 100, t, mask: tColumn % 2 == 1)
Console.WriteLine($"Add t2 to t1 where tColumn is odd = {t}")
//
// Reduction operations
//
// Reduction operations are operations that reduce the number of
// dimensions in a tensor. For example, the Sum method sums all
// elements in a tensor.
// Reduction operations come in two forms.
// The first form is a reduction of the entire tensor to a scalar:
t1 = Tensor.CreateRange(6.0).Reshape(3, 2)
// [[ 0, 1 ],
// [ 2, 3 ],
// [ 4, 5 ]]
let sum = t1.Sum()
// sum = 15
// The second form is a reduction along one or more axes:
let sum1 = t1.Sum(axis: 1)
Console.WriteLine($"sum = {sum1}")
// [ 6, 9 ]
// An optional argument, keepDimensions, can be used to keep the
// reduced dimensions in the result tensor. This is useful when
// you want to broadcast the result back to the original shape:
let mean = Tensor.Mean(t1, axis: 0, keepDimensions: true)
// [[ 0.5 ],
// [ 2.5 ],
// [ 4.5 ]]
let t1Centered = t1 - mean
// [[ -0.5 0.5 ],
// [ -0.5 0.5 ],
// [ -0.5 0.5 ]]
Console.WriteLine($"t1Centered = {t1Centered}")
//
// Tensor views
//
// Sometimes, returning a new tensor for an operation is extremely inefficient.
// For such scenarios, a tensor view is returned. This is a tensor that shares
// the underlying storage with the original tensor. The value of an element
// is only computed when needed.
// Example are RealPart and ImaginaryPart, which operate on tensors of complex numbers:
let tc = Tensor.CreateFromFunction<Complex<int>>(3, (i) => (i, 2 * i + 1))
// [ 0 + 1i, 1 + 3i, 2 + 5i ]
let tcReal = tc.RealPart()
// [ 0, 1, 2 ]
let tcImag = tc.ImaginaryPart()
// [ 1, 3, 5 ]
// The tensor view is updated when the original tensor is changed:
tc.SetValue((8, 9), 1)
Console.WriteLine($"{tc.GetValue(1)} == ({tcReal.GetValue(1)}, {tcImag.GetValue(1)})")
// Likewise, when you update a view, the original tensor is updated as well:
tcReal.SetValue(6, 1)
// tc[1] = (6, 9)
// You can even do fun things like swap the real and imaginary parts:
Console.WriteLine($"Before swap: {tc}")
Tensor.Swap(tcReal, tcImag)
// tc -> [ 1 + 0i, 9 + 6i, 5 + 2i ]
Console.WriteLine($"After swap: {tc}")
Console.Write("Press Enter key to exit...")
Console.ReadLine() |> ignore