BigNumbers in C# QuickStart Sample

Illustrates the basic use of the arbitrary precision classes: BigInteger, BigRational, BigFloat in C#.

View this sample in: Visual Basic F# IronPython

using System;

// The arbitrary precision types reside in the Extreme.Mathematics
// namespace.
using Extreme.Mathematics;

namespace Extreme.Numerics.QuickStart.CSharp
{
    /// <summary>
    /// Illustrates the use of the arbitrary precision number
    /// classes in Extreme Numerics.NET.
    /// </summary>
    class BigNumbers
    {
        static void Main(string[] args)
        {
            // The license is verified at runtime. We're using
            // a demo license here. For more information, see
            // https://numerics.net/trial-key
            Extreme.License.Verify("Demo license");

            // In this QuickStart sample, we'll use 5 different methods to compute 
            // the value of pi, the ratio of the circumference to the diameter of
            // a circle.
            BigFloat pi;

            // The number of decimal digits.
            int digits = 10000;
            // The equivalent number of binary digits, to account for round-off error:
            int binaryDigits = (int)(8 + digits * Math.Log(10, 2));
            // The number of digits in the last correction, if applicable.
            double correctionDigits;
            
            // First, create an AccuracyGoal for the number of digits we want.
            // We'll add 5 extra digits to account for round-off error.
            AccuracyGoal goal = AccuracyGoal.Absolute(digits + 5);
            Console.WriteLine("Calculating {0} digits of pi:", digits);

            // Create a stopwatch so we can time the results.
            System.Diagnostics.Stopwatch sw = new System.Diagnostics.Stopwatch();

            //
            // Method 1: Arctan formula
            // 
            // pi/4 = 88L(172) + 51L(239) + 32L(682) + 44L(5357) + 68L(12943)
            // Where L(p) = Arctan(1/p)
            // We will use big integer arithmetic for this.
            // See the helper function Arctan later in this file.
            Console.WriteLine("Arctan formula using integer arithmetic:");
            sw.Start();
            int[] coefficients = { 88, 51, 32, 44, 68 };
            int[] arguments = { 172, 239, 682, 5357, 12943 };
            pi = BigFloat.Zero;
            for (int k = 0; k < 5; k++)
            {
                pi += coefficients[k] * Arctan(arguments[k], binaryDigits);
                Console.WriteLine("Step {0}: ({1:F3} seconds)", k + 1, sw.Elapsed.TotalSeconds);
            }
            // The ScaleByPowerOfTwo is the fastest way to multiply
            // or divide by a power of two:
            pi = BigFloat.ScaleByPowerOfTwo(pi, 2);
            sw.Stop();
            Console.WriteLine("Total time: {0:F3} seconds.", sw.Elapsed.TotalSeconds, pi);
            Console.WriteLine();

            //
            // Method 2: Rational approximation
            // 
            // pi/2 = 1 + 1/3 + (1*2)/(3*5) + (1*2*3)/(3*5*7) + ...
            //      = 1 + 1/3 * (1 + 2/5 * (1 + 3/7 * (1 + ...)))
            // We gain 1 bit per iteration, so we know where to start.
            Console.WriteLine("Rational approximation using rational arithmetic.");
            Console.WriteLine("This is very inefficient, so we only do up to 10000 digits.");
            sw.Start();
            BigRational an = BigRational.Zero;
            int n0 = digits <= 10000 ? binaryDigits : (int)(8 + 10000 * Math.Log(10, 2));
            for (int n = n0; n > 0; n--)
                an = new BigRational(n, 2 * n + 1) * an + 1;
            pi = new BigFloat(2 * an, goal, RoundingMode.TowardsNearest);
            sw.Stop();
            Console.WriteLine("Total time: {0:F3} seconds.", sw.Elapsed.TotalSeconds, pi);
            Console.WriteLine();

            //
            // Method 3: Arithmetic-Geometric mean
            //
            // By Salamin & Brent, based on discoveries by C.F.Gauss.
            // See http://www.cs.miami.edu/~burt/manuscripts/gaussagm/agmagain-hyperref.pdf
            Console.WriteLine("Arithmetic-Geometric Mean:");
            sw.Reset();
            sw.Start();
            BigFloat x1 = BigFloat.Sqrt(2, goal, RoundingMode.TowardsNearest);
            BigFloat x2 = BigFloat.One;
            BigFloat S = BigFloat.Zero;
            BigFloat c = BigFloat.One;
            for (int k = 0; k < int.MaxValue; k++)
            {
                S += BigFloat.ScaleByPowerOfTwo(c, k - 1);
                BigFloat aMean = BigFloat.ScaleByPowerOfTwo(x1 + x2, -1);
                BigFloat gMean = BigFloat.Sqrt(x1 * x2);
                x1 = aMean;
                x2 = gMean;
                c = (x1 + x2) * (x1 - x2);
                // GetDecimalDigits returns the approximate number of digits in a number.
                // A negative return value means the number is less than 1.
                correctionDigits = -c.GetDecimalDigits();
                Console.WriteLine("Iteration {0}: {1:F1} digits ({2:F3} seconds)", k, correctionDigits, sw.Elapsed.TotalSeconds);
                if (correctionDigits >= digits)
                    break;
            }
            pi = x1 * x1 / (1 - S);
            sw.Stop();
            Console.WriteLine("Total time: {0:F3} seconds.", sw.Elapsed.TotalSeconds, pi);
            Console.WriteLine();

            //
            // Method 4: Borweins' quartic formula
            //
            // This algorithm quadruples the number of correct digits
            // in each iteration.
            // See http://en.wikipedia.org/wiki/Borwein's_algorithm
            Console.WriteLine("Quartic formula:");
            sw.Reset();
            sw.Start();
            BigFloat sqrt2 = BigFloat.Sqrt(2, goal, RoundingMode.TowardsNearest);
            BigFloat y = sqrt2 - BigFloat.One;
            BigFloat a = new BigFloat(6, goal) - BigFloat.ScaleByPowerOfTwo(sqrt2, 2);
            BigFloat y2 = y * y, y3, y4 = y2 * y2;
            BigFloat da;
            correctionDigits = 0;
            for (int k = 1; 4 * correctionDigits < digits; k++)
            {
                BigFloat qrt = BigFloat.Root(1 - y4, 4);
                y = BigFloat.Subtract(1, qrt, goal, RoundingMode.TowardsNearest)
                    / BigFloat.Add(1, qrt, goal, RoundingMode.TowardsNearest);
                // y = BigFloat.Divide(1 - qrt, 1 + qrt, AccuracyGoal.InheritAbsolute, RoundingMode.TowardsNearest);
                y2 = y * y;
                y3 = y * y2;
                y4 = y2 * y2;
                da = (BigFloat.ScaleByPowerOfTwo(y + y3, 2) + (6 * y2 + y4)) * a
                    - BigFloat.ScaleByPowerOfTwo(y + y2 + y3, 2 * k + 1);
                da = da.RestrictPrecision(goal, RoundingMode.TowardsNearest);
                a += da;
                correctionDigits = -da.GetDecimalDigits();
                Console.WriteLine("Iteration {0}: {1:F1} digits ({2:F3} seconds)", k, correctionDigits, sw.Elapsed.TotalSeconds);
            }
            pi = BigFloat.Inverse(a);
            sw.Stop();
            Console.WriteLine("Total time: {0:F3} seconds.", sw.Elapsed.TotalSeconds, pi);
            Console.WriteLine();

            // 
            // Method 5: The built-in method
            //
            // The method used to compute pi internally is an order of magnitude
            // faster than any of the above.
            Console.WriteLine("Built-in function:");
            sw.Reset();
            sw.Start();
            pi = BigFloat.GetPi(goal);
            sw.Stop();
            Console.WriteLine("Total time: {0:F3} seconds.", sw.Elapsed.TotalSeconds, pi);
            // The highest precision value of pi is cached, so
            // getting pi to any precision up to that is super fast.
            Console.WriteLine("Built-in function (cached):");
            sw.Reset();
            sw.Start();
            pi = BigFloat.GetPi(goal);
            sw.Stop();
            Console.WriteLine("Total time: {0:F3} seconds.", sw.Elapsed.TotalSeconds, pi);

            Console.Write("Press Enter key to exit...");
            Console.ReadLine();
        }
    
        /// <summary>
        /// Helper function to compute Arctan(1/p)
        /// </summary>
        /// <param name="p">The reciprocal of the argument.</param>
        /// <param name="binaryDigits">The number of binary digits in the result.</param>
        /// <returns>Arctan(1/<paramref name="p"/>) to <paramref name="binaryDigits"/> binary digits.</returns>
        private static BigFloat Arctan(int p, int binaryDigits)
        {
            // We scale the result by a factor of 2^binaryDigits.
            // The first term is 1/p.
            BigInteger power = BigInteger.Pow(2, binaryDigits) / p;
            // We store the sum in result.
            BigInteger result = power;
            bool subtract = true;
            int k = 0;
            while (!power.IsZero)
            {
                k++;
                // Expressions involving big integers look exactly like any other arithmetic expression:

                // The kth term is (-1)^k 1/(2k+1) 1/p^2k.
                // So the power is 1/p^2 times the previous power.
                power /= (p * p);
                // And we alternately add and subtract
                if (subtract)
                    result -= power / (2 * k + 1);
                else
                    result += power / (2 * k + 1);
                subtract = !subtract;
            }
            // Scale the result.
            return BigFloat.ScaleByPowerOfTwo(new BigFloat(result), -binaryDigits);
        }
    }
}