ILinear Algebra Operations<T, TVector, TMatrix>.Hermitian Rank Update Method
Definition
Namespace: Extreme.Mathematics.LinearAlgebra.Implementation
Assembly: Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.23
Assembly: Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.23
Overload List
Hermitian | Performs a rank one update of a hermitian. |
Hermitian | Performs a hermitian rank two update of a hermitian matrix. |
Hermitian | Performs a rank k update of a hermitian matrix. |
Hermitian | Performs a rank 2k update of a hermitian matrix. |
HermitianRankUpdate(MatrixTriangle, Int32, T, TVector, TMatrix)
Performs a rank one update of a hermitian.
void HermitianRankUpdate(
MatrixTriangle storedTriangle,
int n,
T alpha,
TVector x,
TMatrix a
)
Parameters
- storedTriangle MatrixTriangle
- Specifies whether the matrix is an upper or lower triangular matrix.
- n Int32
- The number of rows and columns in the matrix a.
- alpha T
- The scalar used to multiply the outer product.
- x TVector
- A reference to a one-dimensional array containing the elements of the vector x.
- a TMatrix
- Reference to the first element in a one-dimensional array that contains the elements of the matrix.
HermitianRankUpdate(MatrixTriangle, Int32, T, TVector, TVector, TMatrix)
Performs a hermitian rank two update of a hermitian matrix.
void HermitianRankUpdate(
MatrixTriangle storedTriangle,
int n,
T alpha,
TVector x,
TVector y,
TMatrix a
)
Parameters
- storedTriangle MatrixTriangle
- Specifies whether the matrix is an upper or lower triangular matrix.
- n Int32
- The number of rows and columns in the matrix a.
- alpha T
- The scalar used to multiply the outer product.
- x TVector
- A reference to a one-dimensional array containing the elements of the vector x.
- y TVector
- A reference to a one-dimensional array containing the elements of the vector y.
- a TMatrix
- Reference to the first element in a one-dimensional array that contains the elements of the matrix.
HermitianRankUpdate(MatrixTriangle, TransposeOperation, Int32, Int32, T, TMatrix, T, TMatrix)
Performs a rank k update of a hermitian matrix.
void HermitianRankUpdate(
MatrixTriangle storedTriangle,
TransposeOperation trans,
int n,
int k,
T alpha,
TMatrix a,
T beta,
TMatrix c
)
Parameters
- storedTriangle MatrixTriangle
- Specifies whether the elements of the matrix a are stored in the upper or lower triangular part.
- trans TransposeOperation
- Specifies the operation to be performed on the matrix a.
- n Int32
- The number of rows and columns in the matrix c.
- k Int32
- The number of columns in the matrix a transformed as specified by trans.
- alpha T
- The scalar used to multiply the matrix-matrix product.
- a TMatrix
- Reference to the first element in a one-dimensional array that contains the elements of the first matrix.
- beta T
- The scalar used to multiply c.
- c TMatrix
- Reference to the first element in a one-dimensional array that contains the elements of the third matrix.
HermitianRankUpdate(MatrixTriangle, TransposeOperation, Int32, Int32, T, TMatrix, TMatrix, T, TMatrix)
Performs a rank 2k update of a hermitian matrix.
void HermitianRankUpdate(
MatrixTriangle storedTriangle,
TransposeOperation trans,
int n,
int k,
T alpha,
TMatrix a,
TMatrix b,
T beta,
TMatrix c
)
Parameters
- storedTriangle MatrixTriangle
- Specifies whether the elements of the matrix a are stored in the upper or lower triangular part.
- trans TransposeOperation
- Specifies the operation to be performed on the matrix a.
- n Int32
- The number of rows and columns in the matrix c.
- k Int32
- The number of columns in the matrix a transformed as specified by trans.
- alpha T
- The scalar used to multiply the matrix-matrix product.
- a TMatrix
- Reference to the first element in a one-dimensional array that contains the elements of the first matrix.
- b TMatrix
- Reference to the first element in a one-dimensional array that contains the elements of the second matrix.
- beta T
- The scalar used to multiply c.
- c TMatrix
- Reference to the first element in a one-dimensional array that contains the elements of the third matrix.