Normal Distribution Constructor
Definition
Assembly: Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.23
Overload List
Normal | Constructs a new NormalDistribution with mean equal to zero and standard deviation equal to 1. |
Normal | Constructs a new NormalDistribution with specified mean and standard deviation equal to 1. |
Normal | Estimates the parameters of the distribution of a variable assuming it follows a normal distribution. |
Normal | Constructs a new NormalDistribution with specified mean and standard deviation. |
Normal | Estimates the parameters of the distribution of a variable assuming it follows a normal distribution. |
NormalDistribution
public NormalDistribution()
Remarks
This constructor creates a standard normal distribution, with mean zero and standard deviation equal to one.
NormalDistribution(Double)
public NormalDistribution(
double mean
)
Parameters
- mean Double
- The mean of the distribution.
NormalDistribution(Vector<Double>)
public NormalDistribution(
Vector<double> variable
)
Parameters
- variable Vector<Double>
- A vector.
Return Value
The NormalDistribution that best matches the distribution of variable.Remarks
Use this constructor to create a NormalDistribution whose parameters are estimated from variable. This constructor uses an unbiased estimator.
Exceptions
ArgumentNullException | variable is null. |
NormalDistribution(Double, Double)
public NormalDistribution(
double mean,
double standardDeviation
)
Parameters
- mean Double
- The mean of the distribution.
- standardDeviation Double
- The standard deviation of the distribution.
Remarks
The standard deviation must be greater than zero.
Exceptions
ArgumentOutOfRangeException | standardDeviation is less than or equal to zero. |
NormalDistribution(Vector<Double>, EstimationMethod)
public NormalDistribution(
Vector<double> variable,
EstimationMethod method
)
Parameters
- variable Vector<Double>
- A vector.
- method EstimationMethod
- An EstimationMethod value that specifies the method to be used to estimate the distribution parameters.
Return Value
The NormalDistribution that best matches the distribution of variable.Remarks
Use this constructor to create a NormalDistribution whose parameters are estimated from variable. The maximum likelihood and matching moment methods use biased and unbiased estimators for the standard deviation.
Exceptions
ArgumentNullException | variable is null. |