Structured Linear Equations in F# QuickStart Sample

Illustrates how to solve systems of simultaneous linear equations that have special structure in F#.

This sample is also available in: C#, Visual Basic, IronPython.

Overview

This QuickStart sample demonstrates how to solve systems of linear equations when the coefficient matrix has special structure - specifically triangular or symmetric matrices. These special structures allow for more efficient solution methods compared to general matrices.

The sample shows:

  • Creating and working with triangular matrices
  • Solving triangular systems of equations using the Solve method
  • Creating and working with symmetric matrices
  • Solving symmetric systems of equations
  • Using the Cholesky decomposition for positive definite symmetric matrices
  • Handling multiple right-hand sides
  • Computing matrix properties like determinants, inverses and condition numbers
  • Error handling for indefinite matrices
  • Performance considerations when solving multiple systems

Code examples demonstrate proper usage of the relevant Numerics.NET classes and methods, including error checking and handling special cases. The sample includes examples of both single right-hand side vectors and multiple right-hand side matrices.

The code

//=====================================================================
//
//  File: structured-linear-equations.fs
//
//---------------------------------------------------------------------
//
//  This file is part of the Numerics.NET Code Samples.
//
//  Copyright (c) 2004-2025 ExoAnalytics Inc. All rights reserved.
//
//=====================================================================

module StructuredLinearEquations

// Illustrates solving symmetrical and triangular systems
// of simultaneous linear equations using classes
// in the Numerics.NET.LinearAlgebra namespace of Numerics.NET.

#light

open System

open Numerics.NET
// The structured matrix classes reside in the
// Numerics.NET.LinearAlgebra namespace.
open Numerics.NET.LinearAlgebra

// The license is verified at runtime. We're using a 30 day trial key here.
// For more information, see:
//     https://numerics.net/trial-key
let licensed = Numerics.NET.License.Verify("your-trial-key-here")

// To learn more about solving general systems of
// simultaneous linear equations, see the
// LinearEquations QuickStart Sample.
//
// The methods and classes available for solving
// structured systems of equations are similar
// to those for general equations.

//
// Triangular systems and matrices
//

printfn "Triangular matrices:"
// For the basics of working with triangular
// matrices, see the TriangularMatrices QuickStart
// Sample.
//
// Let's start with a triangular matrix. Remember
// that elements are stored in column-major order
// by default.
let t =
    Matrix.CreateUpperTriangular(
        4, 4,
        [|
            1.0; 0.0; 0.0; 0.0;
            1.0; 2.0; 0.0; 0.0;
            1.0; 4.0; 1.0; 0.0;
            1.0; 3.0; 1.0; 2.0
        |], MatrixElementOrder.ColumnMajor)
let b1 = Vector.Create(1.0, 3.0, 6.0, 3.0)
let b2 =
    Matrix.CreateFromArray(4, 2,
        [|
            1.0; 3.0; 6.0; 3.0;
            2.0; 3.0; 5.0; 8.0
        |], MatrixElementOrder.ColumnMajor)
printfn "t = %O" (t.ToString("F4"))

//
// The Solve method
//

// The following solves m x = b1.
let x1 = t.Solve(b1)
printfn "x1 = %O" (x1.ToString("F4"))
// A second parameter specifies whether to overwrite
// the right-hand side with the result. Solve also
// returns the result, which we ignore here:
t.Solve(b1, true) |> ignore
printfn "b1 = %O" (b1.ToString("F4"))
// You can solve for multiple right hand side
// vectors by passing them in a DenseMatrix:
let x2 = t.Solve(b2, false)
printfn "x2 = %O" (x2.ToString("F4"))

//
// Related Methods
//

// You can verify whether a matrix is singular
// using the IsSingular method:
printfn "IsSingular(t) = %b" (t.IsSingular())
// The inverse matrix is returned by the Inverse
// method:
printfn "Inverse(t) = %O" (t.GetInverse().ToString("F4"))
// The determinant is also available:
printfn "Det(t) = %.4f" (t.GetDeterminant())
// The condition number is an estimate for the
// loss of precision in solving the equations
printfn "Cond(t) = %.4f" (t.EstimateConditionNumber())
printfn ""

//
// Symmetric systems and matrices
//

printfn "Symmetric matrices:"
// For the basics of working with symmetric
// matrices, see the SymmetricMatrices QuickStart
// Sample.
//
// Let's start with a symmetric matrix. Remember
// that elements are stored in column-major order
// by default.
let s =
    Matrix.CreateSymmetric(4,
        [|
            1.0; 0.0; 0.0; 0.0;
            1.0; 2.0; 0.0; 0.0;
            1.0; 1.0; 2.0; 0.0;
            1.0; 0.0; 1.0; 4.0
        |], MatrixTriangle.Upper, MatrixElementOrder.ColumnMajor)
let b3 = Vector.Create(1.0, 3.0, 6.0, 3.0)
printfn "s = %O" (s.ToString("F4"))

//
// The Solve method
//

// The following solves m x = b1.
let x3 = s.Solve(b3)
printfn "x3 = %O" (x1.ToString("F4"))
// A second parameter specifies whether to overwrite the
// right-hand side with the result.
s.Solve(b2, true) |> ignore
printfn "b2 = %O" (b2.ToString("F4"))
// You can solve for multiple right hand side
// vectors by passing them in a DenseMatrix:
let x4 = s.Solve(b3, false)
printfn "x4 = %O" (x4.ToString("F4"))

//
// Related Methods
//

// You can verify whether a matrix is singular
// using the IsSingular method:
printfn "IsSingular(s) = %b" (s.IsSingular())
// The inverse matrix is returned by the Inverse
// method:
printfn "Inverse(s) = %O" (s.GetInverse().ToString("F4"))
// The determinant is also available:
printfn "Det(s) = %.4f" (s.GetDeterminant())
// The condition number is an estimate for the
// loss of precision in solving the equations
printfn "Cond(s) = %.4f" (s.EstimateConditionNumber())
printfn ""

//
// The CholeskyDecomposition class
//

// If the symmetric matrix is positive definite,
// you can use the CholeskyDecomposition class
// to optimize performance if multiple operations
// need to be performed. This class does the
// bulk of the calculations only once. This
// decomposes the matrix into G x transpose(G)
// where G is a lower triangular matrix.
//
// If the matrix is indefinite, you need to use
// the LUDecomposition class instead. See the
// LinearEquations QuickStart Sample for details.
printfn "Using Cholesky Decomposition:"
// The constructor takes an optional second argument
// indicating whether to overwrite the original
// matrix with its decomposition:
let cf = s.GetCholeskyDecomposition(false)
// The Factor method performs the actual
// factorization. It is called automatically
// if needed.
cf.Decompose()
// All methods mentioned earlier are still available:
let x5 = cf.Solve(b2, false)
printfn "x5 = %O" (x5.ToString("F4"))
printfn "IsSingular(m) = %b" (cf.IsSingular())
printfn "Inverse(m) = %O" (cf.GetInverse().ToString("F4"))
printfn "Det(m) = %.4f" (cf.GetDeterminant())
printfn "Cond(m) = %.4f" (cf.EstimateConditionNumber())
// In addition, you have access to the
// triangular matrix, G, of the composition.
printfn "  G = %O" (cf.LowerTriangularFactor.ToString("F4"))

// Note that if the matrix is indefinite,
// the factorization will fail and throw a
// MatrixNotPositiveDefiniteException.
s.[0, 0] <- -99.0
let cf2 = s.GetCholeskyDecomposition()
try
    cf2.Decompose()
with :? MatrixNotPositiveDefiniteException as e -> printfn "%s" e.Message

// To avoid this, you can use the TryDecompose method,
// which returns true if the decomposition succeeds,
// and false otherwise:
if (cf2.TryDecompose()) then
    printfn "Decomposition succeeded!"
else
    printfn "Decomposition failed!"

printf "Press Enter key to exit..."
Console.ReadLine() |> ignore