Simple Time Series in Visual Basic QuickStart Sample

View on GitHub

Illustrates how to perform simple operations on time series data using classes in the Numerics.NET.Statistics.TimeSeriesAnalysis namespace in Visual Basic.

This sample is also available in: C#, F#, IronPython.

Overview

This QuickStart sample demonstrates how to work with time series data using Numerics.NET. It shows basic operations for loading, analyzing and transforming financial market data.

The sample loads historical stock price data from a CSV file into a time series data frame. It demonstrates several key operations:

  • Loading time series data from CSV files
  • Accessing individual variables (columns) like Open, High, Low, Close prices and Volume
  • Calculating basic statistics like mean prices
  • Selecting data for specific time ranges
  • Resampling time series to different frequencies (daily to monthly)
  • Using different aggregation functions for each variable when resampling
    • First price of period for Open
    • Last price of period for Close
    • Maximum price for High
    • Minimum price for Low
    • Sum for Volume

The code provides a practical example of handling financial market data, but the techniques shown can be applied to any time-stamped data series.

The code

Option Infer On

Imports Numerics.NET.Data.Text
Imports Numerics.NET.DataAnalysis
Imports Numerics.NET.Statistics

    ' Illustrates the use of the TimeSeriesCollection class to represent
    ' and manipulate time series data.
    Module SimpleTimeSeries

        Sub Main()
        ' The license is verified at runtime. We're using
        ' a 30 day trial key here. For more information, see
        '     https://numerics.net/trial-key
        Numerics.NET.License.Verify("your-trial-key-here")

        ' Time series data frames can be created in a variety of ways.
        ' Here we read from a CSV file And specify the column to use as the index
        Dim timeSeries = DelimitedTextFile.ReadDataFrame(Of DateTime)(
                "..\..\..\..\..\Data\MicrosoftStock.csv", "Date")

        ' The RowCount property returns the number of
        ' observations:
        Console.WriteLine($"# observations: {timeSeries.RowCount}")

        '
        ' Accessing variables
        '

        ' Variables are accessed by name or numeric index.
        ' They need to be cast to the appropriate specialized
        ' type (NumericalVariable, DateTimeVariable, etc.)
        Dim close = timeSeries("Close").As(Of Double)
        Console.WriteLine($"Average close price: ${close.Mean():F2}")

        ' Variables can also be accessed by numeric index:
        Console.WriteLine($"3rd variable: {timeSeries(2).Name}")

        ' The GetSubset method returns the data from the specified range.
        Dim y2004 As DateTime = New DateTime(2004, 1, 1)
        Dim y2005 As DateTime = New DateTime(2005, 1, 1)
        Dim series2004 = timeSeries.GetRows(y2004, y2005)
        Console.WriteLine("Opening price on the first trading day of 2004: {0}",
                series2004("Open").GetValue(0))

        '
        ' Transforming the Frequency
        '

        ' The first step is to define the aggregator function
        ' for each variable. This function specifies how each
        ' observation in the new time series is calculated
        ' from the observations in the original series.

        ' The Aggregator class has a number of
        ' pre-defined aggregator functions:
        Dim allAggregators = New Dictionary(Of String, AggregatorGroup)() From
            {
                {"Open", Aggregators.First},
                {"Close", Aggregators.Last},
                {"High", Aggregators.Max},
                {"Low", Aggregators.Min},
                {"Volume", Aggregators.Sum}
            }

        ' We can specify a subset of the series by providing
        ' the start and end dates.

        ' The TransformFrequency method returns a new series
        ' containing the aggregated data:

        Dim monthlySeries = timeSeries.GetRows(y2004, y2005).
                Resample(Recurrence.Monthly, allAggregators)

        ' We can now print the results:
        Console.WriteLine("Monthly statistics for Microsoft Corp. (MSFT)")
        Console.WriteLine(monthlySeries.Summarize())

    End Sub

End Module