Simple Time Series in C# QuickStart Sample
Illustrates how to perform simple operations on time series data using classes in the Numerics.NET.Statistics.TimeSeriesAnalysis namespace in C#.
View this sample in: Visual Basic F# IronPython
using System;
using System.Collections.Generic;
using Numerics.NET.Data.Text;
using Numerics.NET.DataAnalysis;
using Numerics.NET.Statistics;
namespace Numerics.NET.QuickStart.CSharp
{
/// <summary>
/// Illustrates the use of the TimeSeriesCollection class to represent
/// and manipulate time series data.
/// </summary>
class SimpleTimeSeries
{
static void Main(string[] args)
{
// The license is verified at runtime. We're using
// a 30 day trial key here. For more information, see
// https://numerics.net/trial-key
Numerics.NET.License.Verify("64542-18980-57619-62268");
// Time series data frames can be created in a variety of ways.
// Here we read from a CSV file and specify the column to use as the index:
var timeSeries = DelimitedTextFile.ReadDataFrame<DateTime>(
@"..\..\..\..\Data\MicrosoftStock.csv", "Date");
// The RowCount property returns the number of
// observations:
Console.WriteLine($"# observations: {timeSeries.RowCount}");
//
// Accessing variables
//
// Variables are accessed by name or numeric index.
// They need to be cast to the appropriate specialized
// type using the As() method:
var close = timeSeries["Close"].As<double>();
Console.WriteLine($"Average close price: ${close.Mean():F2}");
// Variables can also be accessed by numeric index:
Console.WriteLine($"3rd variable: {timeSeries[2].Name}");
// The GetRows method returns the data from the specified range.
DateTime y2004 = new DateTime(2004, 1, 1);
DateTime y2005 = new DateTime(2005, 1, 1);
var series2004 = timeSeries.GetRows(y2004, y2005);
Console.WriteLine("Opening price on the first trading day of 2004: {0}",
series2004["Open"].GetValue(0));
//
// Transforming the Frequency
//
// The first step is to define the aggregator function
// for each variable. This function specifies how each
// observation in the new time series is calculated
// from the observations in the original series.
// The Aggregators class has a number of
// pre-defined aggregator functions.
// We create a dictionary that maps column names
// to aggregators:
var aggregators = new Dictionary<string, AggregatorGroup>()
{
{ "Open", Aggregators.First },
{ "Close", Aggregators.Last },
{ "High", Aggregators.Max },
{ "Low", Aggregators.Min },
{ "Volume", Aggregators.Sum }
};
// We can then resample the data frame in accordance with
// a recurrence pattern we specify, in this case monthly:
var monthlySeries = timeSeries.Resample(Recurrence.Monthly, aggregators);
// We can specify a subset of the series by selecting it
// from the data frame first:
monthlySeries = timeSeries.GetRows(y2004, y2005)
.Resample(Recurrence.Monthly, aggregators);
// We can now print the results:
Console.WriteLine("Monthly statistics for Microsoft Corp. (MSFT)");
Console.WriteLine(monthlySeries.ToString());
Console.Write("Press any key to exit.");
Console.ReadLine();
}
}
}