Logistic Regression Model Constructor
Definition
Namespace: Extreme.Statistics
Assembly: Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.23
Assembly: Extreme.Numerics (in Extreme.Numerics.dll) Version: 8.1.23
Overload List
Logistic | Constructs a new LogisticRegressionModel. |
Logistic | Constructs a new LogisticRegressionModel. |
Logistic | Constructs a new LogisticRegressionModel. |
Logistic | Constructs a new SimpleRegressionModel. |
Logistic | Constructs a new LogisticRegressionModel. |
Logistic | Constructs a fitted logistic regression model. |
LogisticRegressionModel(ICategoricalVector, Vector<Double>[])
Constructs a new LogisticRegressionModel.
public LogisticRegressionModel(
ICategoricalVector dependentVariable,
params Vector<double>[] independentVariables
)
Parameters
- dependentVariable ICategoricalVector
- A categorical vector that specifies the dependent variable.
- independentVariables Vector<Double>[]
- An array of vectors that contain the independent variables.
Exceptions
ArgumentNullException | dependentVariable is null.
-or- independentVariables is null. |
LogisticRegressionModel(IDataFrame, String)
Constructs a new LogisticRegressionModel.
public LogisticRegressionModel(
IDataFrame dataFrame,
string formula
)
Parameters
- dataFrame IDataFrame
- A data frame containing the data for the regression.
- formula String
- A formula that specifies the variables in the model.
Exceptions
FormatException | The formula is not in the correct format. |
LogisticRegressionModel(IDataFrame, String, String[])
Constructs a new LogisticRegressionModel.
public LogisticRegressionModel(
IDataFrame dataFrame,
string dependentVariable,
params string[] independentVariables
)
Parameters
- dataFrame IDataFrame
- A data frame containing the data for the regression.
- dependentVariable String
- The name of the dependent variable.
- independentVariables String[]
- An array containing the names of the independent variable.
LogisticRegressionModel(Vector<Double>, Matrix<Double>, Vector<Double>)
Constructs a new SimpleRegressionModel.
public LogisticRegressionModel(
Vector<double> dependentData,
Matrix<double> independentData,
Vector<double> weights = null
)
Parameters
Remarks
The columns
Exceptions
ArgumentNullException | dependentData is null.
-or- independentData is null. |
LogisticRegressionModel(ICategoricalVector, Vector<Double>[], Vector<Double>, LogisticRegressionMethod)
Constructs a new LogisticRegressionModel.
public LogisticRegressionModel(
ICategoricalVector dependentVariable,
Vector<double>[] independentVariables,
Vector<double> weights = null,
LogisticRegressionMethod method = LogisticRegressionMethod.Automatic
)
Parameters
- dependentVariable ICategoricalVector
- A vector that specifies the dependent variable.
- independentVariables Vector<Double>[]
- An array of vectors that contain the independent variables.
- weights Vector<Double> (Optional)
- Optional. A vector containing the case weights.
- method LogisticRegressionMethod (Optional)
- Optional. A LogisticRegressionMethod value that specifies the kind of logistic regression to perform. The default is binary logistic regression.
Exceptions
ArgumentNullException | dependentVariable is null.
-or- independentVariables is null. |
LogisticRegressionModel(ModelInput, IIndex, Vector<Double>, SymmetricMatrix<Double>, Int32, Double)
Constructs a fitted logistic regression model.
public LogisticRegressionModel(
ModelInput specification,
IIndex categoryIndex,
Vector<double> parameters,
SymmetricMatrix<double> covarianceMatrix,
int degreesOfFreedom,
double standardError
)
Parameters
- specification ModelInput
- The input to the model.
- categoryIndex IIndex
- parameters Vector<Double>
- covarianceMatrix SymmetricMatrix<Double>
- degreesOfFreedom Int32
- standardError Double
Remarks
Models created with this constructor do not carry any information about the source data or the fit results.