Logistic Regression Model Properties
Properties
Base |
Gets an index containing the keys of the columns
that are required inputs to the model.
(Inherited from Model) |
Can |
Gets whether the classifier supports predicting probabilities
for each class.
(Inherited from ClassificationModel<T>) |
Category |
Gets the category index of the dependent variable or targets.
(Inherited from ClassificationModel<T>) |
Computed |
Gets whether the model has been computed.
(Inherited from Model) Obsolete. |
Convergence | Gets the convergence status of the algorithm that computes the model parameters. |
Covariance |
Gets the covariance matrix of the model parameters.
Obsolete. |
Data |
Gets an object that contains all the data used as input to the model.
(Inherited from Model) |
Dependent |
Gets a vector that contains the dependent variable that is to be fitted.
(Inherited from ClassificationModel<T>) |
Fitted |
Gets whether the model has been computed.
(Inherited from Model) |
Independent |
Gets a matrix whose columns contain the independent variables in the model.
(Inherited from ClassificationModel<T>) |
Input |
Gets the schema for the features used for fitting the model.
(Inherited from Model) |
Log | Gets the log-likelihood of the fitted model. |
Max |
Gets or sets the maximum degree of parallelism enabled by this instance.
(Inherited from Model) |
Method | Gets or sets the kind of logistic regression represented by this LogisticRegressionModel. |
Model |
Gets the collection of variables used in the model.
(Inherited from Model) |
Number |
Gets the number of observations the model is based on.
(Inherited from Model) |
Parallel |
Gets or sets an object that specifies how the calculation of the model should be parallelized.
(Inherited from Model) |
Parameters | Gets the collection of parameters associated with this model. |
Parameter | Gets the collection of parameters associated with this model. |
Predicted |
Gets a vector containing the model's predicted values for the dependent variable.
(Inherited from ClassificationModel<T>) |
Predicted |
Gets a vector containing the model's predicted values for the dependent variable.
(Inherited from ClassificationModel<T>) |
Predictions |
Gets a vector containing the model's predicted values for the dependent variable.
(Inherited from ClassificationModel<T>) |
Probability |
Gets a matrix containing the residuals of the model.
(Inherited from ClassificationModel<T>) |
Status |
Gets the status of the model, which determines which information is available.
(Inherited from Model) |
Supports |
Indicates whether the model supports case weights.
(Inherited from Model) |
Weights |
Gets or sets the actual weights.
(Inherited from Model) |