LogisticRegressionModel Properties

Properties

BaseFeatureIndex Gets an index containing the keys of the columns that are required inputs to the model.
(Inherited from Model)
CanPredictProbabilities Gets whether the classifier supports predicting probabilities for each class.
(Inherited from ClassificationModel<T>)
CategoryIndex Gets the category index of the dependent variable or targets.
(Inherited from ClassificationModel<T>)
Computed Gets whether the model has been computed.
(Inherited from Model)
Obsolete.
ConvergenceStatus Gets the convergence status of the algorithm that computes the model parameters.
CovarianceMatrix Gets the covariance matrix of the model parameters.
Obsolete.
Data Gets an object that contains all the data used as input to the model.
(Inherited from Model)
DependentVariable Gets a vector that contains the dependent variable that is to be fitted.
(Inherited from ClassificationModel<T>)
Fitted Gets whether the model has been computed.
(Inherited from Model)
IndependentVariables Gets a matrix whose columns contain the independent variables in the model.
(Inherited from ClassificationModel<T>)
InputSchema Gets the schema for the features used for fitting the model.
(Inherited from Model)
LogLikelihood Gets the log-likelihood of the fitted model.
MaxDegreeOfParallelism Gets or sets the maximum degree of parallelism enabled by this instance.
(Inherited from Model)
Method Gets or sets the kind of logistic regression represented by this LogisticRegressionModel.
ModelSchema Gets the collection of variables used in the model.
(Inherited from Model)
NumberOfObservations Gets the number of observations the model is based on.
(Inherited from Model)
ParallelOptions Gets or sets an object that specifies how the calculation of the model should be parallelized.
(Inherited from Model)
Parameters Gets the collection of parameters associated with this model.
ParameterValues Gets the collection of parameters associated with this model.
PredictedLogProbabilities Gets a vector containing the model's predicted values for the dependent variable.
(Inherited from ClassificationModel<T>)
PredictedProbabilities Gets a vector containing the model's predicted values for the dependent variable.
(Inherited from ClassificationModel<T>)
Predictions Gets a vector containing the model's predicted values for the dependent variable.
(Inherited from ClassificationModel<T>)
ProbabilityResiduals Gets a matrix containing the residuals of the model.
(Inherited from ClassificationModel<T>)
Status Gets the status of the model, which determines which information is available.
(Inherited from Model)
SupportsWeights Indicates whether the model supports case weights.
(Inherited from Model)
Weights Gets or sets the actual weights.
(Inherited from Model)

See Also