Managed Linear Algebra Operations Of Single.Full Matrix Norm Method
Definition
Namespace: Extreme.Mathematics.LinearAlgebra.Implementation
Assembly: Extreme.Numerics.SinglePrecision (in Extreme.Numerics.SinglePrecision.dll) Version: 8.1.4
Assembly: Extreme.Numerics.SinglePrecision (in Extreme.Numerics.SinglePrecision.dll) Version: 8.1.4
Overload List
Full | Computes the norm of a general rectangular matrix. |
Full | Returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real matrix A. |
FullMatrixNorm(MatrixNorm, Int32, Int32, Array2D<Complex<Single>>)
Computes the norm of a general rectangular matrix.
public override float FullMatrixNorm(
MatrixNorm norm,
int m,
int n,
Array2D<Complex<float>> a
)
Parameters
- norm MatrixNorm
- A MatrixNorm that specifies the type of norm to compute.
- m Int32
- The number of rows of the matrix.
- n Int32
- The number of columns of the matrix.
- a Array2D<Complex<Single>>
- A complex number array that contains the elements of the matrix.
Return Value
SingleThe norm of the matrix.
Remarks
This method corresponds to the LAPACK routine ?LANGE.
FullMatrixNorm(MatrixNorm, Int32, Int32, Array2D<Single>)
Returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real matrix A.
public override float FullMatrixNorm(
MatrixNorm norm,
int m,
int n,
Array2D<float> a
)
Parameters
- norm MatrixNorm
Specifies the value to be returned in DLANGE as described above.
- m Int32
The number of rows of the matrix A. M >= 0. When M = 0, DLANGE is set to zero.
- n Int32
The number of columns of the matrix A. N >= 0. When N = 0, DLANGE is set to zero.
- a Array2D<Single>
Dimension (LDA,N) The m by n matrix A.
The leading dimension of the array A. LDA >= max(M,1).
Return Value
SingleImplements
ILinearAlgebraOperations<T>.FullMatrixNorm(MatrixNorm, Int32, Int32, Array2D<T>)Remarks
DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' ere norm1 denotes the one norm of a matrix (maximum column sum), ormI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
This method corresponds to the LAPACK routine DLANGE.