Managed Linear Algebra Operations Of Single.Triangular Matrix Norm Method
Definition
Namespace: Extreme.Mathematics.LinearAlgebra.Implementation
Assembly: Extreme.Numerics.SinglePrecision (in Extreme.Numerics.SinglePrecision.dll) Version: 8.1.4
Assembly: Extreme.Numerics.SinglePrecision (in Extreme.Numerics.SinglePrecision.dll) Version: 8.1.4
Overload List
Triangular | Computes the norm of a triangular matrix. |
Triangular | Returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix A. |
TriangularMatrixNorm(MatrixNorm, MatrixTriangle, MatrixDiagonal, Int32, Int32, Array2D<Complex<Single>>)
Computes the norm of a triangular matrix.
public override float TriangularMatrixNorm(
MatrixNorm norm,
MatrixTriangle storedTriangle,
MatrixDiagonal diag,
int m,
int n,
Array2D<Complex<float>> a
)
Parameters
- norm MatrixNorm
- A MatrixNorm that specifies the type of norm to compute.
- storedTriangle MatrixTriangle
- A MatrixTriangle value that specifies whether the matrix is upper or lower triangular.
- diag MatrixDiagonal
- A MatrixDiagonal value that indicates whether the diagonal elements are all equal to one.
- m Int32
- The number of rows of the matrix.
- n Int32
- The number of columns of the matrix.
- a Array2D<Complex<Single>>
- A complex number array that contains the elements of the matrix.
Return Value
SingleThe norm of the matrix.
Remarks
This method corresponds to the LAPACK routine ?LANTR.
TriangularMatrixNorm(MatrixNorm, MatrixTriangle, MatrixDiagonal, Int32, Int32, Array2D<Single>)
Returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix A.
public override float TriangularMatrixNorm(
MatrixNorm norm,
MatrixTriangle storedTriangle,
MatrixDiagonal diag,
int m,
int n,
Array2D<float> a
)
Parameters
- norm MatrixNorm
Specifies the value to be returned in DLANTR as described above.
- storedTriangle MatrixTriangle
Specifies whether the matrix A is upper or lower trapezoidal. = 'U': Upper trapezoidal = 'L': Lower trapezoidal Note that A is triangular instead of trapezoidal if M = N.
- diag MatrixDiagonal
Specifies whether or not the matrix A has unit diagonal. = 'N': Non-unit diagonal = 'U': Unit diagonal
- m Int32
The number of rows of the matrix A. M >= 0, and if UPLO = 'U', M <= N. When M = 0, DLANTR is set to zero.
- n Int32
The number of columns of the matrix A. N >= 0, and if UPLO = 'L', N <= M. When N = 0, DLANTR is set to zero.
- a Array2D<Single>
Dimension (LDA,N) The trapezoidal matrix A (A is triangular if M = N). If UPLO = 'U', the leading m by n upper trapezoidal part of the array A contains the upper trapezoidal matrix, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading m by n lower trapezoidal part of the array A contains the lower trapezoidal matrix, and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U', the diagonal elements of A are not referenced and are assumed to be one.
The leading dimension of the array A. LDA >= max(M,1).
Return Value
SingleImplements
ILinearAlgebraOperations<T>.TriangularMatrixNorm(MatrixNorm, MatrixTriangle, MatrixDiagonal, Int32, Int32, Array2D<T>)Remarks
DLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' ere norm1 denotes the one norm of a matrix (maximum column sum), ormI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
This method corresponds to the LAPACK routine DLANTR.