Iterative Sparse Solvers in Visual Basic QuickStart Sample
Illustrates the use of iterative sparse solvers and preconditioners for efficiently solving large, sparse systems of linear equations in Visual Basic.
View this sample in: C# F# IronPython
Option Infer On
Imports Numerics.NET.Data.Text
Imports Numerics.NET
Imports Numerics.NET.LinearAlgebra
Imports Numerics.NET.LinearAlgebra.IterativeSolvers
Imports Numerics.NET.LinearAlgebra.IterativeSolvers.Preconditioners
' Illustrates the use of iterative sparse solvers for efficiently
' solving large, sparse systems of linear equations using the
' iterative sparse solver and preconditioner classes from the
' Numerics.NET.LinearAlgebra.IterativeSolvers namespace of Numerics.NET.
Module IterativeSparseSolvers
Sub Main()
' The license is verified at runtime. We're using
' a 30 day trial key here. For more information, see
' https://numerics.net/trial-key
Numerics.NET.License.Verify("64542-18980-57619-62268")
' This QuickStart Sample illustrates how to solve sparse linear systems
' using iterative solvers.
' IterativeSparseSolver is the base class for all
' iterative solver classes:
Dim solver As IterativeSparseSolver(Of Double)
'
' Non-symmetric systems
'
Console.WriteLine("Non-symmetric systems")
' We load a sparse matrix and right-hand side from a data file:
Dim A = CType(MatrixMarketFile.ReadMatrix(Of Double)(
"..\..\..\..\data\sherman3.mtx"), SparseMatrix(Of Double))
Dim b = MatrixMarketFile.ReadVector(Of Double)(
"..\..\..\..\data\sherman3_rhs1.mtx")
Console.WriteLine("Solve Ax = b")
Console.WriteLine("A is {0}x{1} with {2} nonzeros.", A.RowCount, A.ColumnCount, A.NonzeroCount)
' Some solvers are suitable for symmetric matrices only.
' Our matrix is not symmetric, so we need a solver that
' can handle this:
' #Region DOCIterativeSparseSolvers1
solver = New BiConjugateGradientSolver(Of Double)(A)
solver.Solve(b)
Console.WriteLine($"Solved in {solver.IterationsNeeded} iterations.")
Console.WriteLine($"Estimated error: {solver.SolutionReport.Error}")
' #End Region
' Using a preconditioner can improve convergence. You can use
' one of the predefined preconditioners, or supply your own.
' With incomplete LU preconditioner
solver.Preconditioner = New IncompleteLUPreconditioner(Of Double)(A)
solver.Solve(b)
Console.WriteLine($"Solved in {solver.IterationsNeeded} iterations.")
Console.WriteLine($"Estimated error: {solver.EstimatedError}")
'
' Symmetrical systems
'
Console.WriteLine("Symmetric systems")
' In this example we solve the Laplace equation on a rectangular grid
' with Dirichlet boundary conditions.
' We create 100 divisions in each direction, giving us 99 interior points
' in each direction:
Const nx = 99
Const ny = 99
' The boundary conditions are just some arbitrary functions.
Dim left = Vector.CreateFromFunction(ny, Function(i) (i / (nx + 1.0)) ^ 2)
Dim right = Vector.CreateFromFunction(ny, Function(i) 1 - (i / (nx + 1.0)))
Dim top = Vector.CreateFromFunction(nx, Function(i) Elementary.SinPi(5 * (i / (nx + 1.0))))
Dim bottom = Vector.CreateFromFunction(nx, Function(i) Elementary.CosPi(5 * (i / (nx + 1.0))))
' We discretize the Laplace operator using the 5 point stencil.
Dim laplacian = Matrix.CreateSparse(Of Double)(nx * ny, nx * ny, 5 * nx * ny)
Dim rhs = Vector.Create(Of Double)(nx * ny)
For j As Integer = 0 To ny - 1
For i As Integer = 0 To nx - 1
Dim ix As Integer = j * nx + i
If (j > 0) Then laplacian(ix, ix - nx) = 0.25
If (i > 0) Then laplacian(ix, ix - 1) = 0.25
laplacian(ix, ix) = -1.0
If (i + 1 < nx) Then laplacian(ix, ix + 1) = 0.25
If (j + 1 < ny) Then laplacian(ix, ix + nx) = 0.25
Next
Next
' We build up the right-hand sides using the boundary conditions:
For i As Integer = 0 To nx - 1
rhs(i) = -0.25 * top(i)
rhs(nx * (ny - 1) + i) = -0.25 * bottom(i)
Next
For j As Integer = 0 To ny - 1
rhs(j * nx) -= 0.25 * left(j)
rhs(j * nx + nx - 1) -= 0.25 * right(j)
Next
Console.WriteLine("A is {0}x{1} with {2} nonzeros.", laplacian.RowCount, laplacian.ColumnCount, laplacian.NonzeroCount)
' Finally, we create an iterative solver suitable for
' symmetric systems...
solver = New QuasiMinimalResidualSolver(Of Double)(laplacian)
' and solve using the right-hand side we just calculated:
solver.Solve(rhs)
Console.WriteLine($"Solved in {solver.IterationsNeeded} iterations.")
Console.WriteLine($"Estimated error: {solver.EstimatedError}")
Console.Write("Press Enter key to exit...")
Console.ReadLine()
End Sub
End Module