Higher Dimensional Numerical Integration in Visual Basic QuickStart Sample
Illustrates numerical integration of functions in higher dimensions using classes in the Numerics.NET.Calculus namespace in Visual Basic.
This sample is also available in: C#, F#, IronPython.
Overview
This QuickStart sample demonstrates how to perform numerical integration of functions in two dimensions using Numerics.NET’s integration capabilities.
The sample shows several key aspects of multi-dimensional integration:
- Using the
AdaptiveIntegrator2D
class for efficient integration over rectangular regions - Working with the
Repeated1DIntegrator2D
class that uses repeated one-dimensional integration - Setting up integrand functions using delegates
- Integrating over arbitrary non-rectangular regions by specifying boundary functions
- Monitoring integration progress through properties like Status, EstimatedError, and function evaluation counts
- Comparing numerical results with known analytical solutions
The example includes integration of several test functions including:
- A rational function: 4/(1 + 2x + 2y) over the unit square
- A trigonometric function: (π²/4)sin(πx)sin(πy) over the unit square
- A polynomial function: x²y² over the unit disk
For each integration, the sample demonstrates how to set up the problem, execute the integration, and analyze the results including error estimates and computational effort required.
The code
Option Infer On
' The numerical integration classes reside in the
' Numerics.NET.Calculus namespace.
Imports Numerics.NET.Calculus
' Function delegates reside in the Numerics.NET
' namespace.
Imports Numerics.NET
Imports Numerics.NET.Algorithms
' Illustrates numerical integration in higher dimensions using
' classes in the Numerics.NET.Calculus namespace of Numerics.NET.
Module NDIntegration
Sub Main()
' The license is verified at runtime. We're using
' a 30 day trial key here. For more information, see
' https://numerics.net/trial-key
Numerics.NET.License.Verify("your-trial-key-here")
'
' Two-dimensional integration
'
' The function we are integrating must be
' provided as a Func(Of Double, Double, Double) delegate.
' For more information about this delegate, see the
' FunctionDelegates QuickStart sample.
'
' The functions used in this sample are defined at
' the end of this file.
Dim f1 As Func(Of Double, Double, Double) = AddressOf Integrand1
Dim f2 As Func(Of Double, Double, Double) = AddressOf Integrand2
Dim f3 As Func(Of Double, Double, Double) = AddressOf Integrand3
' Variable to hold the result:
Dim result As Double
' The AdaptiveIntegrator2D class is the most efficient
' 2D integrator in most cases. It uses an adaptive algorithm.
' Construct an instance of the integrator class:
Dim integrator1 As New AdaptiveIntegrator2D()
' An example of setting the integrand and bounds through properties
' is given below. Here, we put the integrand and the bounds
' of the integration region directly in the call to Integrate,
' which performs the calculation:
integrator1.Integrate(f1, 0, 1, 0, 1)
Console.WriteLine("4 / (1 + 2x + 2y) on [0,1] * [0,1]")
Console.WriteLine($" Value: {integrator1.Result:F15}")
Console.WriteLine($" Exact value: {Math.Log(3125.0 / 729.0):F15} = Ln(3125 / 729)")
' To see whether the algorithm ended normally,
' inspect the Status property:
Console.WriteLine(" Status: {0}",
integrator1.Status)
Console.WriteLine(" Estimated error: {0}",
integrator1.EstimatedError)
Console.WriteLine(" Iterations: {0}",
integrator1.IterationsNeeded)
Console.WriteLine(" Function evaluations: {0}",
integrator1.EvaluationsNeeded)
' Another integrator uses repeated 1-dimensional
' integration:
Dim integrator2 As New Repeated1DIntegrator2D()
' You can set the order of integration, as well as
' the integration rules for the X and the Y direction:
integrator2.InitialDirection = Repeated1DIntegratorDirection.X
' You can set the integrand and the bounds of the integration region
' by setting properties of the integrator object:
integrator2.Integrand = f2
integrator2.XLowerBound = 0.0
integrator2.XUpperBound = 1.0
integrator2.YLowerBound = 0.0
integrator2.YUpperBound = 1.0
result = integrator2.Integrate()
Console.WriteLine("Pi^2 / 4 Sin(Pi x) Sin(Pi y) on [0,1] * [0,1]")
Console.WriteLine($" Value: {integrator2.Result:F15}")
Console.WriteLine($" Exact value: {1.0:F15}")
' To see whether the algorithm ended normally,
' inspect the Status property:
Console.WriteLine(" Status: {0}",
integrator2.Status)
Console.WriteLine(" Estimated error: {0}",
integrator2.EstimatedError)
Console.WriteLine(" Iterations: {0}",
integrator2.IterationsNeeded)
Console.WriteLine(" Function evaluations: {0}",
integrator2.EvaluationsNeeded)
'
' Integration over arbitrary regions
'
' The repeated 1D integrator can also be used to compute
' integrals over arbitrary regions. To do this, you need to
' supply function that return the lower bound and upper bound
' of the region as a function of x.
' Here, we integrate x^2 * y^2 over the unit disk.
integrator2.LowerBoundFunction = AddressOf DiskLowerBound
integrator2.UpperBoundFunction = AddressOf DiskUpperBound
integrator2.XLowerBound = -1.0
integrator2.XUpperBound = 1.0
integrator2.Integrand = f3
result = integrator2.Integrate()
Console.WriteLine("x^2 * y^2 on the unit disk")
Console.WriteLine($" Value: {integrator2.Result:F15}")
Console.WriteLine($" Exact value: {Math.PI / 24:F15} = Pi / 24")
' To see whether the algorithm ended normally,
' inspect the Status property:
Console.WriteLine(" Status: {0}",
integrator2.Status)
Console.WriteLine(" Estimated error: {0}",
integrator2.EstimatedError)
Console.WriteLine(" Iterations: {0}",
integrator2.IterationsNeeded)
Console.WriteLine(" Function evaluations: {0}",
integrator2.EvaluationsNeeded)
Console.Write("Press Enter key to exit...")
Console.ReadLine()
End Sub
' <summary>
' Function to integrate over [0, 1] * [0, 1]
' </summary>
Function Integrand1(x As Double, y As Double) As Double
Return 4 / (1 + 2 * x + 2 * y)
End Function
' <summary>
' Function to integrate over [0, 1] * [0, 1]
' </summary>
Function Integrand2(x As Double, y As Double) As Double
Return Math.PI * Math.PI / 4 * Math.Sin(Math.PI * x) * Math.Sin(Math.PI * y)
End Function
' <summary>
' Lower bound of a unit disk as a function of x.
' </summary>
Function DiskLowerBound(x As Double) As Double
x = Math.Abs(x)
If (x >= 1) Then
Return 0
End If
Return -Math.Sqrt(1 - x * x)
End Function
' <summary>
' Upper bound of a unit disk as a function of x.
' </summary>
Function DiskUpperBound(x As Double) As Double
x = Math.Abs(x)
If (x >= 1) Then
Return 0
End If
Return Math.Sqrt(1 - x * x)
End Function
' <summary>
' Function to integrate over the unit disc.
' </summary>
Function Integrand3(x As Double, y As Double) As Double
Return x * x * y * y
End Function
End Module