Generic Decomposition Operations<T>.Symmetric Decompose Method
            
            Definition
Namespace: Numerics.NET.LinearAlgebra.Implementation
Assembly: Numerics.NET.Generic (in Numerics.NET.Generic.dll) Version: 9.1.5
Assembly: Numerics.NET.Generic (in Numerics.NET.Generic.dll) Version: 9.1.5
Overload List
| Symmetric | Computes the factorization of a real symmetric matrix A using the Bunch-Kaufman diagonal pivoting method.  | 
| Symmetric | Computes the factorization of a real symmetric matrix A using the Bunch-Kaufman diagonal pivoting method.  | 
| Symmetric | Computes the factorization of a real symmetric matrix A using the Bunch-Kaufman diagonal pivoting method.  | 
SymmetricDecompose(MatrixTriangle, Int32, Span<T>, Int32, Span<Int32>, Int32)
Computes the factorization of a real symmetric matrix A using the Bunch-Kaufman diagonal pivoting method.
public override void SymmetricDecompose(
	MatrixTriangle storedTriangle,
	int n,
	Span<T> a,
	int lda,
	Span<int> ipiv,
	out int info
)Parameters
- storedTriangle MatrixTriangle
 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.- n Int32
 The order of the matrix A. N >= 0.- a Span<T>
 A is TReal array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, the block diagonal matrix D and the multipliers used to obtain the factor U or L (see below for further details).- lda Int32
 The leading dimension of the array A. LDA >= max(1,N).- ipiv Span<Int32>
 Dimension (N) Details of the interchanges and the block structure of D. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.- info Int32
 = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve a system of equations.
Remarks
            The form of the
            factorization is
               A = U*D*UT  or  A = L*D*LT
            where U (or L) is a product of permutation and unit upper (lower)
            triangular matrices, and D is symmetric and block diagonal with
            1-by-1 and 2-by-2 diagonal blocks.
            This is the blocked version of the algorithm, calling Level 3 BLAS.
            Further Details:
            If UPLO = 'U', then A = U*D*UT, where
               U = P(n)*U(n)* ... *P(k)U(k)* ...,
            i.e., U is a product of terms P(k)*U(k), where k decreases from n to
            1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
            and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
            defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
            that if the diagonal block D(k) is of order s (s = 1 or 2), then
                       (   I    v    0   )   k-s
               U(k) =  (   0    I    0   )   s
                       (   0    0    I   )   n-k
                          k-s   s   n-k
            If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
            If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
            and A(k,k), and v overwrites A(1:k-2,k-1:k).
            If UPLO = 'L', then A = L*D*LT, where
               L = P(1)*L(1)* ... *P(k)*L(k)* ...,
            i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
            n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
            and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
            defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
            that if the diagonal block D(k) is of order s (s = 1 or 2), then
                       (   I    0     0   )  k-1
               L(k) =  (   0    I     0   )  s
                       (   0    v     I   )  n-k-s+1
                          k-1   s  n-k-s+1
            If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
            If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
            and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
            This method corresponds to the LAPACK routine ?SYTRF.