ManagedLapack.LUSolve Method

Definition

Namespace: Numerics.NET.LinearAlgebra.Implementation
Assembly: Numerics.NET (in Numerics.NET.dll) Version: 9.0.3

Overload List

LUSolve(TransposeOperation, Int32, Int32, Array2D<TComplex>, Array1D<Int32>, Array2D<TComplex>, Int32) 
LUSolve(TransposeOperation, Int32, Int32, Span2D<TComplex>, Span<Int32>, Span2D<TComplex>, Int32) 
LUSolve(TransposeOperation, Int32, Int32, Array2D<TComplex>, Array1D<Int32>, Array2D<TComplex>, Int32) ZGETRS solves a system of linear equations A * X = B or A' * X = B with a general N-by-N matrix A using the LU decomposition computed by ZGETRF. Arguments ========= TRANS (input) CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = TransposeOperation.Transpose: A'* X = B (Transpose) = 'C': A'* X = B (Conjugate transpose = Transpose) N (input) INTEGER The elementOrder of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) The factors L and U from the decomposition A = P*L*U as computed by ZGETRF. LDA (input) INTEGER The leading dimension of the array A. LDA >= Max(1,N). IPIV (input) INTEGER array, dimension (N) The pivot indexes from ZGETRF; for 1< =i< =N, row i of the matrix was interchanged with row IPIVi. B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. LDB (input) INTEGER The leading dimension of the array B. LDB >= Max(1,N). INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value =====================================================================
LUSolve(TransposeOperation, Int32, Int32, Span2D<TComplex>, Span<Int32>, Span2D<TComplex>, Int32) ZGETRS solves a system of linear equations A * X = B or A' * X = B with a general N-by-N matrix A using the LU decomposition computed by ZGETRF. Arguments ========= TRANS (input) CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = TransposeOperation.Transpose: A'* X = B (Transpose) = 'C': A'* X = B (Conjugate transpose = Transpose) N (input) INTEGER The elementOrder of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) The factors L and U from the decomposition A = P*L*U as computed by ZGETRF. LDA (input) INTEGER The leading dimension of the array A. LDA >= Max(1,N). IPIV (input) INTEGER array, dimension (N) The pivot indexes from ZGETRF; for 1< =i< =N, row i of the matrix was interchanged with row IPIVi. B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. LDB (input) INTEGER The leading dimension of the array B. LDB >= Max(1,N). INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value =====================================================================
LUSolve(TransposeOperation, Int32, Int32, Span<Complex<Double>>, Int32, Span<Int32>, Span<Complex<Double>>, Int32, Int32) ZGETRS solves a system of linear equations A * X = B or A' * X = B with a general N-by-N matrix A using the LU decomposition computed by ZGETRF. Arguments ========= TRANS (input) CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = TransposeOperation.Transpose: A'* X = B (Transpose) = 'C': A'* X = B (Conjugate transpose = Transpose) N (input) INTEGER The elementOrder of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) The factors L and U from the decomposition A = P*L*U as computed by ZGETRF. LDA (input) INTEGER The leading dimension of the array A. LDA >= Max(1,N). IPIV (input) INTEGER array, dimension (N) The pivot indexes from ZGETRF; for 1< =i< =N, row i of the matrix was interchanged with row IPIVi. B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. LDB (input) INTEGER The leading dimension of the array B. LDB >= Max(1,N). INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value =====================================================================
LUSolve(TransposeOperation, Int32, Int32, Span<Double>, Int32, Span<Int32>, Span<Double>, Int32, Int32) ZGETRS solves a system of linear equations A * X = B or A' * X = B with a general N-by-N matrix A using the LU decomposition computed by ZGETRF. Arguments ========= TRANS (input) CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = TransposeOperation.Transpose: A'* X = B (Transpose) = 'C': A'* X = B (Conjugate transpose = Transpose) N (input) INTEGER The elementOrder of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) The factors L and U from the decomposition A = P*L*U as computed by ZGETRF. LDA (input) INTEGER The leading dimension of the array A. LDA >= Max(1,N). IPIV (input) INTEGER array, dimension (N) The pivot indexes from ZGETRF; for 1< =i< =N, row i of the matrix was interchanged with row IPIVi. B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. LDB (input) INTEGER The leading dimension of the array B. LDB >= Max(1,N). INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value =====================================================================

LUSolve(TransposeOperation, Int32, Int32, Span<Complex<Double>>, Int32, Span<Int32>, Span<Complex<Double>>, Int32, Int32)

ZGETRS solves a system of linear equations A * X = B or A' * X = B with a general N-by-N matrix A using the LU decomposition computed by ZGETRF. Arguments ========= TRANS (input) CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = TransposeOperation.Transpose: A'* X = B (Transpose) = 'C': A'* X = B (Conjugate transpose = Transpose) N (input) INTEGER The elementOrder of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) The factors L and U from the decomposition A = P*L*U as computed by ZGETRF. LDA (input) INTEGER The leading dimension of the array A. LDA >= Max(1,N). IPIV (input) INTEGER array, dimension (N) The pivot indexes from ZGETRF; for 1< =i< =N, row i of the matrix was interchanged with row IPIVi. B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. LDB (input) INTEGER The leading dimension of the array B. LDB >= Max(1,N). INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value =====================================================================
C#
public override void LUSolve(
	TransposeOperation trans,
	int n,
	int nrhs,
	Span<Complex<double>> a,
	int lda,
	Span<int> ipiv,
	Span<Complex<double>> b,
	int ldb,
	out int info
)

Parameters

trans  TransposeOperation
 
n  Int32
 
nrhs  Int32
 
a  Span<Complex<Double>>
 
lda  Int32
 
ipiv  Span<Int32>
 
b  Span<Complex<Double>>
 
ldb  Int32
 
info  Int32
 

LUSolve(TransposeOperation, Int32, Int32, Span<Double>, Int32, Span<Int32>, Span<Double>, Int32, Int32)

ZGETRS solves a system of linear equations A * X = B or A' * X = B with a general N-by-N matrix A using the LU decomposition computed by ZGETRF. Arguments ========= TRANS (input) CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = TransposeOperation.Transpose: A'* X = B (Transpose) = 'C': A'* X = B (Conjugate transpose = Transpose) N (input) INTEGER The elementOrder of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) The factors L and U from the decomposition A = P*L*U as computed by ZGETRF. LDA (input) INTEGER The leading dimension of the array A. LDA >= Max(1,N). IPIV (input) INTEGER array, dimension (N) The pivot indexes from ZGETRF; for 1< =i< =N, row i of the matrix was interchanged with row IPIVi. B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. LDB (input) INTEGER The leading dimension of the array B. LDB >= Max(1,N). INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value =====================================================================
C#
public override void LUSolve(
	TransposeOperation trans,
	int n,
	int nrhs,
	Span<double> a,
	int lda,
	Span<int> ipiv,
	Span<double> b,
	int ldb,
	out int info
)

Parameters

trans  TransposeOperation
 
n  Int32
 
nrhs  Int32
 
a  Span<Double>
 
lda  Int32
 
ipiv  Span<Int32>
 
b  Span<Double>
 
ldb  Int32
 
info  Int32
 

See Also