ExponentialSmoothingModel Class

Represents a model that implements exponential smoothing.

Definition

Namespace: Numerics.NET.Statistics.TimeSeriesAnalysis
Assembly: Numerics.NET (in Numerics.NET.dll) Version: 9.0.4
C#
public class ExponentialSmoothingModel : TimeSeriesModel<double>
Inheritance
Object  →  Model  →  TimeSeriesModel<Double>  →  ExponentialSmoothingModel

Remarks

Use the ExponentialSmoothingModel class to remove noise or forecast data using exponential smoothing. A variety of methods is available, including single and double smoothing.

Single exponential smoothing is equivalent to computing an exponential moving average. The smoothing parameter is determined automatically, by minimizing the squared difference between the actual and the forecast values. Double exponential smoothing introduces a linear trend, and so has two parameters.

Exponential smoothing models are constructed from a Vector<T> that represents the time series data. The Method property determines the type of smoothing. It is of type ExponentialSmoothingMethod. For double exponential smoothing models, the TrendEstimator property, of type ExponentialSmoothingTrendEstimator, determines how the initial value for the trend is determined.

The Fit() method finds the parameter values that minimize the squared error of the forecast. The Forecast(Int32) method can then be used to get the one step ahead forecast, any single future forecast, or a series of forecasts as a Vector<T>.

Constructors

ExponentialSmoothingModel Constructs a new ExponentialSmoothingModel object.

Properties

BaseFeatureIndex Gets an index containing the keys of the columns that are required inputs to the model.
(Inherited from Model)
Computed Gets whether the model has been computed.
(Inherited from Model)
Obsolete.
CovarianceMatrix Gets the covariance matrix of the model parameters.
(Inherited from TimeSeriesModel<T>)
Data Gets an object that contains all the data used as input to the model.
(Inherited from Model)
DegreesOfFreedom Gets the total degrees of freedom of the data.
(Inherited from TimeSeriesModel<T>)
Fitted Gets whether the model has been computed.
(Inherited from Model)
InputSchema Gets the schema for the features used for fitting the model.
(Inherited from Model)
LogLikelihood Gets the log-likelihood that the model generated the data.
(Inherited from TimeSeriesModel<T>)
MaxDegreeOfParallelism Gets or sets the maximum degree of parallelism enabled by this instance.
(Inherited from Model)
Method Gets or sets the smoothing method.
ModelSchema Gets the collection of variables used in the model.
(Inherited from Model)
NumberOfObservations Gets the number of observations the model is based on.
(Inherited from Model)
ParallelOptions Gets or sets an object that specifies how the calculation of the model should be parallelized.
(Inherited from Model)
Parameters Gets the collection of parameters associated with this model.
(Inherited from TimeSeriesModel<T>)
ParameterValues Gets the collection of parameters associated with this model.
(Inherited from TimeSeriesModel<T>)
Predictions Gets a vector containing the model's predicted values for the dependent variable.
(Inherited from TimeSeriesModel<T>)
Residuals Gets a vector containing the residuals of the model.
(Inherited from TimeSeriesModel<T>)
ResidualSumOfSquares Gets the sum of squares of the residuals of the model.
(Inherited from TimeSeriesModel<T>)
StandardError Gets the standard error of the regression.
(Inherited from TimeSeriesModel<T>)
Status Gets the status of the model, which determines which information is available.
(Inherited from Model)
SupportsWeights Indicates whether the model supports case weights.
(Inherited from Model)
TimeSeries Gets the time series that is being modeled.
(Inherited from TimeSeriesModel<T>)
TrendEstimator Gets or sets how the trend is estimated.
Weights Gets or sets the actual weights.
(Inherited from Model)

Methods

Compute() Computes the model.
(Inherited from Model)
Obsolete.
Compute(ParallelOptions) Computes the model.
(Inherited from Model)
Obsolete.
EqualsDetermines whether the specified object is equal to the current object.
(Inherited from Object)
FinalizeAllows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object)
Fit() Fits the model to the data.
(Inherited from Model)
Fit(ParallelOptions) Fits the model to the data.
(Inherited from Model)
FitCore Computes the model.
(Overrides Model.FitCore(ModelInput, ParallelOptions))
Forecast() Returns the one step ahead forecast.
(Inherited from TimeSeriesModel<T>)
Forecast(Int32) Returns the forecast for the specified number of steps ahead.
(Overrides TimeSeriesModel<T>.Forecast(Int32))
GetAkaikeInformationCriterion Returns the Akaike information criterion (AIC) value for the model.
(Inherited from TimeSeriesModel<T>)
GetBayesianInformationCriterion Returns the Bayesian information criterion (BIC) value for the model.
(Inherited from TimeSeriesModel<T>)
GetHashCodeServes as the default hash function.
(Inherited from Object)
GetTypeGets the Type of the current instance.
(Inherited from Object)
MemberwiseCloneCreates a shallow copy of the current Object.
(Inherited from Object)
ResetComputation Clears all fitted model parameters.
(Inherited from Model)
Obsolete.
ResetFit Clears all fitted model parameters.
(Inherited from Model)
SetDataSource Uses the specified data frame as the source for all input variables.
(Inherited from Model)
Summarize() Returns a string containing a human-readable summary of the object using default options.
(Inherited from Model)
Summarize(SummaryOptions) Returns a string containing a human-readable summary of the object using the specified options.
(Overrides Model.Summarize(SummaryOptions))
ToStringReturns a string that represents the current object.
(Inherited from Model)

See Also