RadialBasisFunctions.Gaussian Method

Creates a Gaussian radial basis function kernel: φ(r) = exp(-(εr)²).

Definition

Namespace: Numerics.NET.Curves
Assembly: Numerics.NET (in Numerics.NET.dll) Version: 10.1.0
C#
public static RadialBasisFunction Gaussian(
	double shape
)

Parameters

shape  Double
The shape parameter ε that controls the width of the Gaussian. Must be positive. Smaller values make the kernel narrower.

Return Value

RadialBasisFunction
A RadialBasisFunction representing the Gaussian kernel.

Remarks

The Gaussian kernel produces very smooth interpolants and has infinite support. It is infinitely differentiable and decays rapidly. The shape parameter ε controls the width of the Gaussian.

The kernel is defined as φ(r) = exp(-(εr)²) where ε is the shape parameter and r is the radius.

Note: This is a strictly positive definite (PD) kernel that does not require polynomial augmentation.

Exceptions

ArgumentOutOfRangeExceptionshape is not positive.

See Also