Radial Basis Functions.Gaussian Method
Creates a Gaussian radial basis function kernel: φ(r) = exp(-(εr)²).
Definition
Namespace: Numerics.NET.Curves
Assembly: Numerics.NET (in Numerics.NET.dll) Version: 10.1.0
C#
A RadialBasisFunction representing the Gaussian kernel.
Assembly: Numerics.NET (in Numerics.NET.dll) Version: 10.1.0
public static RadialBasisFunction Gaussian(
double shape
)Parameters
- shape Double
- The shape parameter ε that controls the width of the Gaussian. Must be positive. Smaller values make the kernel narrower.
Return Value
RadialBasisFunctionA RadialBasisFunction representing the Gaussian kernel.
Remarks
The Gaussian kernel produces very smooth interpolants and has infinite support. It is infinitely differentiable and decays rapidly. The shape parameter ε controls the width of the Gaussian.
The kernel is defined as φ(r) = exp(-(εr)²) where ε is the shape parameter and r is the radius.
Note: This is a strictly positive definite (PD) kernel that does not require polynomial augmentation.
Exceptions
| Argument | shape is not positive. |