Radial Basis Functions.Inverse Multiquadric Method
Creates an inverse multiquadric radial basis function kernel: φ(r) = 1/√(1 + (εr)²).
Definition
Namespace: Numerics.NET.Curves
Assembly: Numerics.NET (in Numerics.NET.dll) Version: 10.1.0
C#
A RadialBasisFunction representing the inverse multiquadric kernel.
Assembly: Numerics.NET (in Numerics.NET.dll) Version: 10.1.0
public static RadialBasisFunction InverseMultiquadric(
double shape
)Parameters
- shape Double
- The shape parameter ε that controls the width of the kernel. Must be positive.
Return Value
RadialBasisFunctionA RadialBasisFunction representing the inverse multiquadric kernel.
Remarks
The inverse multiquadric kernel produces smooth interpolants that decay to zero as r increases. It is a conditionally positive definite kernel. The shape parameter ε controls the width of the basis functions.
The kernel is defined as φ(r) = 1/√(1 + (εr)²) where ε is the shape parameter and r is the radius.
Exceptions
| Argument | shape is not positive. |