Radial Basis Functions.Multiquadric Method
Creates a multiquadric radial basis function kernel: φ(r) = √(1 + (εr)²).
Definition
Namespace: Numerics.NET.Curves
Assembly: Numerics.NET (in Numerics.NET.dll) Version: 10.1.0
C#
A RadialBasisFunction representing the multiquadric kernel.
Assembly: Numerics.NET (in Numerics.NET.dll) Version: 10.1.0
public static RadialBasisFunction Multiquadric(
double shape
)Parameters
- shape Double
- The shape parameter ε that controls the flatness near the origin. Must be positive.
Return Value
RadialBasisFunctionA RadialBasisFunction representing the multiquadric kernel.
Remarks
The multiquadric kernel is a popular choice that often produces good results. It grows without bound as r increases but is globally smooth. The shape parameter ε controls the flatness near the origin.
The kernel is defined as φ(r) = √(1 + (εr)²) where ε is the shape parameter and r is the radius.
Exceptions
| Argument | shape is not positive. |