RadialBasisFunctions.Multiquadric Method

Creates a multiquadric radial basis function kernel: φ(r) = √(1 + (εr)²).

Definition

Namespace: Numerics.NET.Curves
Assembly: Numerics.NET (in Numerics.NET.dll) Version: 10.1.0
C#
public static RadialBasisFunction Multiquadric(
	double shape
)

Parameters

shape  Double
The shape parameter ε that controls the flatness near the origin. Must be positive.

Return Value

RadialBasisFunction
A RadialBasisFunction representing the multiquadric kernel.

Remarks

The multiquadric kernel is a popular choice that often produces good results. It grows without bound as r increases but is globally smooth. The shape parameter ε controls the flatness near the origin.

The kernel is defined as φ(r) = √(1 + (εr)²) where ε is the shape parameter and r is the radius.

Exceptions

ArgumentOutOfRangeExceptionshape is not positive.

See Also