Special Class

Contains static methods for the evaluation of special functions.

Definition

Namespace: Numerics.NET
Assembly: Numerics.NET (in Numerics.NET.dll) Version: 9.0.3
C#
public static class Special
Inheritance
Object  →  Special

Methods

AiryAi(Complex<Double>) Evaluates the Airy function Ai(z) for complex argument.
AiryAi(Double) Evaluates the Airy function Ai(x).
AiryAiPrime(Complex<Double>) Evaluates the derivative of the Airy function Ai(z) for complex argument.
AiryAiPrime(Double) Evaluates the derivative of the Airy function Ai(x).
AiryAiPrimeScaled Evaluates the derivative of the Airy function Ai(z) for complex argument scaled to be of the same order of magnitude over the entire domain.
AiryAiScaled Evaluates the Airy function Ai(z) for complex argument scaled to be of the same order of magnitude over the entire domain.
AiryAiZero Returns a zero of the Airy function Ai.
AiryBi(Complex<Double>) Evaluates the Airy function Bi(z) for complex argument.
AiryBi(Double) Evaluates the Airy function Bi(x).
AiryBiPrime(Complex<Double>) Evaluates the derivative of the Airy function Bi(z) for complex argument.
AiryBiPrime(Double) Evaluates the derivative of the Airy function Bi(x).
AiryBiPrimeScaled Evaluates the derivative of the Airy function Bi(z) for complex argument scaled to be of the same order of magnitude over the entire domain.
AiryBiScaled Evaluates the Airy function Bi(z) for complex argument scaled to be of the same order of magnitude over the entire domain.
AiryBiZero Returns a zero of the Airy function Bi.
BernoulliB(Int32) Returns the specified Bernoulli number.
BernoulliB(Int32, Double) Evaluates the Bernoulli polynomial of the specified degree.
BernoulliBSequence Evaluates a sequence of Bernoulli polynomials
BesselH1 Evaluates the Hankel function of the first kind of real order and complex argument.
BesselH2 Evaluates the Hankel function of the second kind of real order and complex argument.
BesselI(Double, Complex<Double>) Evaluates the modified Bessel function of the first kind of real order and complex argument.
BesselI(Double, Double) Evaluates the modified Bessel function of the first kind of real order.
BesselI0(Complex<Double>) Evaluates the modified Bessel function of the first kind of order 0 for complex argument.
BesselI0(Double) Evaluates the modified Bessel function of the first kind of order 0.
BesselI0Scaled Evaluates the modified Bessel function of the first kind of order 0 scaled by a factor exp(-|x|).
BesselI1(Complex<Double>) Evaluates the modified Bessel function of the first kind of order 1 for complex argument.
BesselI1(Double) Evaluates the modified Bessel function of the first kind of order 1.
BesselI1Scaled Evaluates the modified Bessel function of the first kind of order 1 scaled by a factor exp(-|x|).
BesselIScaled(Double, Complex<Double>) Evaluates the modified Bessel function of the first kind of real order scaled by a factor exp(-|z|).
BesselIScaled(Double, Double) Evaluates the modified Bessel function of the first kind of real order scaled by a factor exp(-|x|).
BesselJ(Double) Returns the Bessel function of the first kind of the specified real order.
BesselJ(Int32) Returns the Bessel function of the first kind of the specified integer order.
BesselJ(Double, Complex<Double>) Evaluates the Bessel function of the first kind of real order and complex argument.
BesselJ(Double, Double) Evaluates the Bessel function of the first kind of real order.
BesselJ(Int32, Double) Evaluates the Bessel function of the first kind of integer order.
BesselJ0 Contains methods for calculating the values of the Bessel functions and their variants.
BesselJ1 Evaluates the regular Bessel function of the first kind of order 1.
BesselJY Evaluates the Bessel functions of the first and second kind of real order and complex argument.
BesselJZero Returns a zero of the Bessel function of the first kind.
BesselK(Double, Complex<Double>) Evaluates the modified Bessel function of the second kind of real order and complex argument.
BesselK(Double, Double) Evaluates the modified Bessel function of the second kind.
BesselK(Int32, Double) Evaluates the modified Bessel function of the second kind of integer order.
BesselK0(Complex<Double>) Evaluates the modified Bessel function of the second kind of order 0 for complex argument.
BesselK0(Double) Evaluates the modified Bessel function of the second kind of order 0.
BesselK0Scaled Evaluates the modified Bessel function of the second kind of order 0 scaled by a factor exp(x).
BesselK1(Complex<Double>) Evaluates the modified Bessel function of the second kind of order 1 for complex argument.
BesselK1(Double) Evaluates the modified Bessel function of the second kind of order 1.
BesselK1Scaled Evaluates the modified Bessel function of the second kind of order 1 scaled by a factor of exp(x).
BesselKScaled(Double, Complex<Double>) Evaluates the modified Bessel function of the second kind of real order scaled by a factor exp(z).
BesselKScaled(Double, Double) Evaluates the modified Bessel function of the second kind of real order scaled by a factor exp(x).
BesselY(Double) Returns the Bessel function of the second kind of the specified real order.
BesselY(Int32) Returns the Bessel function of the second kind of the specified integer order.
BesselY(Double, Complex<Double>) Evaluates the Bessel function of the second kind of real order and complex argument.
BesselY(Double, Double) Evaluates the Bessel function of the second kind of real order.
BesselY(Int32, Double) Evaluates the Bessel function of the second kind of integer order.
BesselY0(Complex<Double>) Evaluates the regular Bessel function of the second kind of order 0 for complex argument.
BesselY0(Double) Evaluates the regular Bessel function of the second kind of order 0.
BesselY1(Complex<Double>) Evaluates the regular Bessel function of the second kind of order 0 for complex argument.
BesselY1(Double) Evaluates the regular Bessel function of the second kind of order 1.
BesselYZero Returns a zero of the Bessel function of the second kind.
Beta Evaluates the Beta function.
BinomialCoefficients Enumerates over the binomial coefficients of a specified degree.
ChebyshevT(Int32) Returns a function that evaluates the Chebyshev polynomial of the first kind of the specified degree.
ChebyshevT(Int32, Double) Evaluates the Chebyshev polynomial of the first kind of the specified degree.
ChebyshevTSequence(Double, Span<Double>) Evaluates a sequence of Chebyshev polynomials of the first kind of increasing degree and returns the result in the specified span.
ChebyshevTSequence(Int32, Double, Vector<Double>) Evaluates a sequence of Chebyshev polynomials of the first kind of increasing degree and returns the result in the specified vector.
ChebyshevTSequence(Int32, Double, Span<Double>) Evaluates a sequence of Chebyshev polynomials of the first kind of increasing degree starting at the specified degree and returns the result in the specified span.
ChebyshevTSequence(Int32, Int32, Double, Vector<Double>) Evaluates a sequence of Chebyshev polynomials of the first kind of increasing degree starting at the specified degree and returns the result in the specified vector.
ChebyshevTSeries(Vector<Double>, Double) Evaluates a series of Chebyshev polynomials of the first kind.
ChebyshevTSeries(Vector<Double>, Double, Int32) Evaluates a series of Chebyshev polynomials of the first kind up to the specified degree.
ChebyshevU Evaluates the Chebyshev polynomial of the second kind of the specified degree.
ChebyshevUSequence(Double, Span<Double>) Evaluates a sequence of Chebyshev polynomials of the second kind of increasing degree and returns the result in the specified span.
ChebyshevUSequence(Int32, Double, Vector<Double>) Evaluates a sequence of Chebyshev polynomials of the second kind of increasing degree and returns the result in the specified vector.
ChebyshevUSequence(Int32, Double, Span<Double>) Evaluates a sequence of Chebyshev polynomials of the second kind of increasing degree starting at the specified degree and returns the result in the specified span.
ChebyshevUSequence(Int32, Int32, Double, Vector<Double>) Evaluates a sequence of Chebyshev polynomials of the second kind of increasing degree starting at the specified degree and returns the result in the specified vector.
ChebyshevUSeries(Vector<Double>, Double) Evaluates a series of Chebyshev polynomials of the second kind.
ChebyshevUSeries(Vector<Double>, Double, Int32) Evaluates a series of Chebyshev polynomials of the second kind up to the specified degree.
Combinations Gets the number of ways of picking k unordered outcomes from n possibilities.
CosineIntegral Evaluates the cosine integral function.
Dawson(Complex<Double>) Returns the value of Dawson's integral.
Dawson(Double) Returns the value of Dawson's integral.
Digamma(Double) Evaluates the Digamma function.
Digamma(Int32) Evaluates the Digamma function for an integer argument.
E1 Evaluates the exponential integral function E1(x).
EllipticE(Complex<Double>) Returns the value of the complete elliptic integral of the second kind.
EllipticE(Double) Returns the value of the complete elliptic integral of the second kind.
EllipticE(Complex<Double>, Complex<Double>) Returns the value of the incomplete elliptic integral of the second kind.
EllipticE(Double, Double) Returns the value of the incomplete elliptic integral of the second kind.
EllipticF(Complex<Double>, Complex<Double>) Returns the value of the incomplete elliptic integral of the first kind.
EllipticF(Double, Double) Returns the value of the incomplete elliptic integral of the first kind.
EllipticK(Complex<Double>) Returns the value of the complete elliptic integral of the first kind.
EllipticK(Double) Returns the value of the complete elliptic integral of the first kind.
EllipticPi(Complex<Double>, Complex<Double>) Returns the value of the complete elliptic integral of the third kind.
EllipticPi(Double, Double) Returns the value of the complete elliptic integral of the third kind.
EllipticPi(Complex<Double>, Complex<Double>, Complex<Double>) Returns the value of the incomplete elliptic integral of the third kind.
EllipticPi(Double, Double, Double) Returns the value of the incomplete elliptic integral of the third kind.
Erf(Complex<Double>) Evaluates the error function.
Erf(Double) Evaluates the error function.
Erf(Double, Double) Evaluates the two-argument error function.
Erfc(Complex<Double>) Evaluates the complementary error function.
Erfc(Double) Evaluates the complementary error function.
Erfcx(Complex<Double>) Evaluates the scaled complementary error function.
Erfcx(Double) Evaluates the scaled complementary error function.
Erfi(Complex<Double>) Evaluates the imaginary error function.
Erfi(Double) Evaluates the imaginary error function.
ExponentialIntegral Evaluates the exponential integral function.
Factorial Returns the factorial of a positive integer.
Factorial2 Returns the double factorial of a positive integer.
Faddeeva Evaluates the Faddeeva function for a complex argument.
Fibonacci Returns the nth Fibonacci number.
Fresnel Returns the value of the complex fresnel integral for the specified number.
FresnelC Returns the value of the Fresnel cosine integral for the specified number.
FresnelS Returns the value of the Fresnel sine integral for the specified number.
Gamma(Complex<Double>) Returns the value of the Gamma function for the specified number.
Gamma(Double) Returns the value of the Gamma function for the specified number.
GegenbauerC Evaluates the Gegenbauer polynomial of the specified degree.
GegenbauerCSequence(Double, Double, Span<Double>) Evaluates a sequence of Gegenbauer polynomials of increasing degree and returns the result in the specified vector.
GegenbauerCSequence(Int32, Double, Double, Vector<Double>) Evaluates a sequence of Gegenbauer polynomials of increasing degree starting at the specified degree and returns the result in the specified vector.
GegenbauerCSequence(Int32, Double, Double, Span<Double>) Evaluates a sequence of Gegenbauer polynomials of increasing degree starting at the specified degree and returns the result in the specified vector.
GegenbauerCSequence(Int32, Int32, Double, Double, Vector<Double>) Evaluates a sequence of Gegenbauer polynomials of increasing degree starting at the specified degree and returns the result in the specified vector.
GegenbauerCSeries(Vector<Double>, Double, Double) Evaluates a series of Gegenbauer polynomials.
GegenbauerCSeries(Vector<Double>, Double, Double, Int32) Evaluates a series of Gegenbauer polynomials up to the specified degree.
GetSymbolicDerivative Returns a lambda expression that represents the derivative of a method with respect to the specified argument.
HarmonicNumber Returns the nth Harmonic Number.
HermiteH Evaluates the Hermite polynomial of the specified degree.
HermiteHe Evaluates the Chebyshev-Hermite polynomial of the specified degree.
HermiteHeSequence(Double, Span<Double>) Evaluates a sequence of Chebyshev-Hermite polynomials of increasing degree and returns the result in the specified span.
HermiteHeSequence(Int32, Double, Vector<Double>) Evaluates a sequence of Chebyshev-Hermite polynomials of increasing degree and returns the result in the specified vector.
HermiteHeSequence(Int32, Double, Span<Double>) Evaluates a sequence of Chebyshev-Hermite polynomials of increasing degree starting at the specified degree and returns the result in the specified span.
HermiteHeSequence(Int32, Int32, Double, Vector<Double>) Evaluates a sequence of Chebyshev-Hermite polynomials of increasing degree starting at the specified degree and returns the result in the specified vector.
HermiteHeSeries(Vector<Double>, Double) Evaluates a series of Chebyshev-Hermite polynomials.
HermiteHeSeries(Vector<Double>, Double, Int32) Evaluates a series of Chebyshev-Hermite polynomials up to the specified degree.
HermiteHSequence(Double, Span<Double>) Evaluates a sequence of Hermite polynomials of increasing degree and returns the result in the specified span.
HermiteHSequence(Int32, Double, Vector<Double>) Evaluates a sequence of Hermite polynomials of increasing degree and returns the result in the specified vector.
HermiteHSequence(Int32, Double, Span<Double>) Evaluates a sequence of Hermite polynomials of increasing degree starting at the specified degree and returns the result in the specified span.
HermiteHSequence(Int32, Int32, Double, Vector<Double>) Evaluates a sequence of Hermite polynomials of increasing degree starting at the specified degree and returns the result in the specified vector.
HermiteHSeries(Vector<Double>, Double) Evaluates a series of Hermite polynomials.
HermiteHSeries(Vector<Double>, Double, Int32) Evaluates a series of Hermite polynomials up to the specified degree.
Hypergeometric0F1 Returns the value of the confluent hypergeometric limit function 0F1.
Hypergeometric1F1 Returns the value of the confluent hypergeometric function 1F1.
Hypergeometric2F1 Returns the value of Gauss' hypergeometric function 2F1.
HypergeometricU(Double, Double, Double) Returns the value of the confluent hypergeometric function of the second kind U.
HypergeometricU(Int32, Int32, Double) Returns the value of the confluent hypergeometric function of the second kind U for integer values of the parameters.
IncompleteBeta(Double, Double) Returns a function that Evaluates the Incomplete Beta function for fixed shape parameters.
IncompleteBeta(Double, Double, Double) Evaluates the Incomplete Beta function.
IncompleteGamma(Double) Returns a function that evaluates the Incomplete Gamma function.
IncompleteGamma(Double, Double) Evaluates the Incomplete Gamma function.
IncompleteGamma(Double, Double, Double) Evaluates the incomplete Gamma function between two arguments.
InverseErf Evaluates the inverse of the error function.
InverseErfc Evaluates the inverse of the complementary error function.
InverseRegularizedBeta Evaluates the iinverse of the Regularized Beta function.
InverseRegularizedGammaP Returns the inverse of the regularized Gamma function P(a, x).
InverseRegularizedGammaQ Returns the inverse of the regularized Gamma function Q(a, x).
Jacobi Evaluates the Jacobi elliptic functions sn, cn, and dn.
Obsolete.
JacobiAmplitude Computes Jacobi's amplitude function.
JacobiCD Evaluates the Jacobi elliptic functions cd.
JacobiCN Evaluates the Jacobi elliptic functions cn.
JacobiCS Evaluates the Jacobi elliptic functions cs.
JacobiDC Evaluates the Jacobi elliptic functions dc.
JacobiDN Evaluates the Jacobi elliptic functions dn.
JacobiDS Evaluates the Jacobi elliptic functions ds.
JacobiElliptic Evaluates the Jacobi Elliptic functions sn, cn, and dn.
JacobiEpsilon Computes Jacobi's Epsilon function.
JacobiNC Evaluates the Jacobi elliptic functions nc.
JacobiND Evaluates the Jacobi elliptic functions nd.
JacobiNS Evaluates the Jacobi elliptic functions ns.
JacobiP Evaluates the Jacobi polynomial of the specified degree.
JacobiPSequence(Double, Double, Double, Span<Double>) Evaluates a sequence of Jacobi polynomials of increasing degree and returns the result in the specified span.
JacobiPSequence(Int32, Double, Double, Double, Vector<Double>) Evaluates a sequence of Jacobi polynomials of increasing degree starting at the specified degree and returns the result in the specified vector.
JacobiPSequence(Int32, Double, Double, Double, Span<Double>) Evaluates a sequence of Jacobi polynomials of increasing degree starting at the specified degree and returns the result in the specified span.
JacobiPSequence(Int32, Int32, Double, Double, Double, Vector<Double>) Evaluates a sequence of Jacobi polynomials of increasing degree starting at the specified degree and returns the result in the specified vector.
JacobiPSeries(Vector<Double>, Double, Double, Double) Evaluates a series of Jacobi polynomials.
JacobiPSeries(Vector<Double>, Double, Double, Double, Int32) Evaluates a series of Jacobi polynomials up to the specified degree.
JacobiSC Evaluates the Jacobi elliptic functions sc.
JacobiSD Evaluates the Jacobi elliptic functions sd.
JacobiSN Evaluates the Jacobi elliptic functions sn.
JacobiZeta Computes Jacobi's Zeta function.
JacobiZeta2 Computes Jacobi's Zeta function (alternate definition).
KelvinBe(Double) Evaluates the real and imaginary parts of the Kelvin function of the first kind of order 0.
KelvinBe(Double, Double) Evaluates the real and imaginary parts of the Kelvin function of the first kind.
KelvinBei(Double) Evaluates the imaginary part of the Kelvin function of the first kind of order zero.
KelvinBei(Double, Double) Evaluates the imaginary part of the Kelvin function of the first kind.
KelvinBeiPrime(Double) Evaluates the imaginary part of the derivative of the Kelvin function of the first kind of order zero.
KelvinBeiPrime(Double, Double) Evaluates the imaginary part of the derivative of the Kelvin function of the first kind.
KelvinBePrime(Double) Evaluates the real and imaginary parts of the derivative of the Kelvin function of the first kind of order 0.
KelvinBePrime(Double, Double) Evaluates the real and imaginary parts of the derivative of the Kelvin function of the first kind.
KelvinBer(Double) Evaluates the real part of the Kelvin function of the first kind.
KelvinBer(Double, Double) Evaluates the real part of the Kelvin function of the first kind.
KelvinBerPrime(Double) Evaluates the real part of the derivative of the Kelvin function of the first kind.
KelvinBerPrime(Double, Double) Evaluates the real part of the derivative of the Kelvin function of the first kind.
KelvinKe(Double) Evaluates the real and imaginary parts of the Kelvin function of the second kind of order 0.
KelvinKe(Double, Double) Evaluates the real and imaginary parts of the Kelvin function of the second kind.
KelvinKei(Double) Evaluates the imaginary part of the Kelvin function of the second kind of order 0.
KelvinKei(Double, Double) Evaluates the imaginary part of the Kelvin function of the second kind.
KelvinKeiPrime(Double) Evaluates the imaginary part of the derivative of the Kelvin function of the second kind of order 0.
KelvinKeiPrime(Double, Double) Evaluates the imaginary part of the derivative of the Kelvin function of the second kind.
KelvinKePrime(Double) Evaluates the real and imaginary parts of the derivative of the Kelvin function of the second kind of order 0.
KelvinKePrime(Double, Double) Evaluates the real and imaginary parts of the derivative of the Kelvin function of the second kind.
KelvinKer(Double) Evaluates the real part of the Kelvin function of the second kind of order 0.
KelvinKer(Double, Double) Evaluates the real part of the Kelvin function of the second kind.
KelvinKerPrime(Double) Evaluates the real part of the derivative of the Kelvin function of the second kind of order 0.
KelvinKerPrime(Double, Double) Evaluates the real part of the derivative of the Kelvin function of the second kind.
LaguerreL(Int32, Double) Evaluates the Laguerre polynomial of the specified degree.
LaguerreL(Int32, Double, Double) Evaluates the generalized Laguerre polynomial of the specified degree.
LaguerreLSequence(Double, Span<Double>) Evaluates a sequence of Laguerre polynomials of increasing degree and returns the result in the specified span.
LaguerreLSequence(Double, Double, Span<Double>) Evaluates a sequence of generalized Laguerre polynomials of increasing degree and returns the result in the specified vector.
LaguerreLSequence(Int32, Double, Vector<Double>) Evaluates a sequence of Laguerre polynomials of increasing degree and returns the result in the specified vector.
LaguerreLSequence(Int32, Double, Span<Double>) Evaluates a sequence of Laguerre polynomials of increasing degree starting at the specified degree and returns the result in the specified span.
LaguerreLSequence(Int32, Double, Double, Vector<Double>) Evaluates a sequence of generalized Laguerre polynomials of increasing degree and returns the result in the specified vector.
LaguerreLSequence(Int32, Double, Double, Span<Double>) Evaluates a sequence of generalized Laguerre polynomials of increasing degree starting at the specified degree and returns the result in the specified vector.
LaguerreLSequence(Int32, Int32, Double, Vector<Double>) Evaluates a sequence of Laguerre polynomials of increasing degree starting at the specified degree and returns the result in the specified vector.
LaguerreLSequence(Int32, Int32, Double, Double, Vector<Double>) Evaluates a sequence of generalized Laguerre polynomials of increasing degree starting at the specified degree and returns the result in the specified vector.
LaguerreLSeries(Vector<Double>, Double) Evaluates a series of Laguerre polynomials.
LaguerreLSeries(Vector<Double>, Double, Double) Evaluates a series of generalized Laguerre polynomials.
LaguerreLSeries(Vector<Double>, Double, Int32) Evaluates a series of Laguerre polynomials up to the specified degree.
LaguerreLSeries(Vector<Double>, Double, Double, Int32) Evaluates a series of generalized Laguerre polynomials up to the specified degree.
LegendreP Evaluates the Legendre polynomial of the specified degree.
LegendrePSequence(Double, Span<Double>) Evaluates a sequence of Legendre polynomials of increasing degree and returns the result in the specified span.
LegendrePSequence(Int32, Double, Vector<Double>) Evaluates a sequence of Legendre polynomials of increasing degree starting at the specified degree and returns the result in the specified vector.
LegendrePSequence(Int32, Double, Span<Double>) Evaluates a sequence of Legendre polynomials of increasing degree starting at the specified degree and returns the result in the specified span.
LegendrePSequence(Int32, Int32, Double, Vector<Double>) Evaluates a sequence of Legendre polynomials of increasing degree starting at the specified degree and returns the result in the specified vector.
LegendrePSeries(Vector<Double>, Double) Evaluates a series of Legendre polynomials.
LegendrePSeries(Vector<Double>, Double, Int32) Evaluates a series of Legendre polynomials up to the specified degree.
LogarithmicIntegral Evaluates the exponential integral function.
LogBeta Evaluates the logarithm of the Beta function.
LogCombinations Gets the natural logarithm of Combinations(Int32, Int32).
LogFactorial Returns the natural logarithm of the factorial of a positive integer.
LogFactorial2 Returns the natural logarithm of the double factorial of a positive integer.
LogGamma(Complex<Double>) Returns the natural logarithm of the Gamma function for the specified complex number number.
LogGamma(Double) Returns the natural logarithm of the Gamma function for the specified number.
LogGamma(Double, Int32) Evaluates the natural logarithm of the Gamma function and returns the sign as an out parameter.
MultinomialCoefficient(Int32[]) Returns the number of ways to partition a set into subsets of the specified size.
MultinomialCoefficient(ReadOnlySpan<Int32>) Returns the number of ways to partition a set into subsets of the specified size.
OwenT Evaluates Owen's T function.
Pochhammer Returns the Pochhammer symbol.
PolyGamma Returns the polygamma function of the specified order.
RegularizedBeta(Double, Double) Returns a function that evaluates the Regularized Beta function for fixed shape parameters.
RegularizedBeta(Double, Double, Double) Evaluates the Regularized Beta function.
RegularizedGammaP Evaluates the normalized incomplete Gamma function P(a,x).
RegularizedGammaQ Evaluates the normalized incomplete Gamma function Q(a,x).
SineIntegral Evaluates the sine integral function.
SphericalBesselJ(Double, Double) Evaluates the spherical Bessel function of the first kind of integer order.
SphericalBesselJ(Int32, Double) Evaluates the spherical Bessel function of the first kind.
SphericalBesselY(Double, Double) Evaluates the spherical Bessel function of the first kind of integer order.
SphericalBesselY(Int32, Double) Evaluates the spherical Bessel function of the second kind.
StruveH0 Evaluates the Struve function of order 0.
StruveH1 Evaluates the Struve function of order 1.
StruveL0 Evaluates the modified Struve function of order 0.
StruveL1 Evaluates the modified Struve function of order 1.
TaylorCoefficient Evaluates the Taylor coefficient of the specified degree.
Variations Gets the number of ways of picking k ordered outcomes from n possibilities.
Voigt Evaluates the Voigt profile function.
ZernikeNormalization Evaluates the standard normalization constant for Zernike polynomials of the specified degree.
ZernikeR Evaluates the radial Zernike polynomial of the specified degree.
ZernikeRPartialSequence Evaluates a sequence of Zernike polynomials of increasing radial degree and azimuthal frequency.
ZernikeRSequence Evaluates a sequence of Zernike polynomials of increasing degree starting at the specified degree and returns the result in the specified vector.
ZernikeZ Evaluates the Zernike polynomial of the specified radial degree and azimuthal frequency.
ZernikeZExpansion(Func<Int32, Int32, Int32>, Vector<Double>, Boolean, Double, Double) Evaluates an expansion of Zernike polynomials.
ZernikeZExpansion(Func<Int32, Int32, Int32>, Vector<Double>, Boolean, Double, Double, Int32) Evaluates an expansion of Zernike polynomials up to the specified radial degree.
ZernikeZPartialSequence Evaluates a sequence of Zernike polynomials of increasing radial degree of the specified length and returns the result in the specified vector.
ZernikeZSequence(Func<Int32, Int32, Int32>, Int32, Boolean, Double, Double) Evaluates a sequence of Zernike polynomials of increasing radial degree and azimuthal frequency.
ZernikeZSequence(Func<Int32, Int32, Int32>, Int32, Boolean, Double, Double, Vector<Double>) Evaluates a sequence of Zernike polynomials and returns the result in the specified vector.
Zeta(Double) Returns the Riemann zeta function.
Zeta(Double, Double) Returns the Hurwitz zeta function.

Fields

MaxGammaArgument A double value indicating the largest argument for the Gamma(Double) function that will not result in an overflow.
ZernikeAnsiIndex Gets the linearized index of a Zernike polynomial according to the ANSI scheme.
ZernikeNollIndex Gets the linearized index of a Zernike polynomial according to the Noll scheme.
ZernikeWyantIndex Gets the linearized index of a Zernike polynomial according to the Wyant scheme.

See Also