Function Math.Integrate Method
Definition
Namespace: Numerics.NET
Assembly: Numerics.NET (in Numerics.NET.dll) Version: 9.0.6
Assembly: Numerics.NET (in Numerics.NET.dll) Version: 9.0.6
Overload List
Integrate( | Numerically integrates a function of one variable. |
Integrate( | Numerically integrates a function of one variable. |
Integrate( | Numerically integrates a function of two variables over a rectangular region. |
Integrate( | Numerically integrates a function of two variables over a rectangular region. |
Integrate(Func<Double, Double>, Interval<Double>)
Numerically integrates a function of one variable.
public static double Integrate(
this Func<double, double> integrand,
Interval<double> interval
)
Parameters
- integrand Func<Double, Double>
- A delegate that represents a function of one variable that specifies the function to integrate.
- interval Interval<Double>
- The integration interval.
Return Value
DoubleAn approximation of the definite integral of integrand over interval.
Usage Note
In Visual Basic and C#, you can call this method as an instance method on any object of type Func<Double, Double>. When you use instance method syntax to call this method, omit the first parameter. For more information, see Extension Methods (Visual Basic) or Extension Methods (C# Programming Guide).Integrate(Func<Double, Double>, Double, Double)
Numerically integrates a function of one variable.
public static double Integrate(
this Func<double, double> integrand,
double lowerBound,
double upperBound
)
Parameters
- integrand Func<Double, Double>
- A delegate that represents a function of one variable that specifies the function to integrate.
- lowerBound Double
- The lower limit of the integration interval.
- upperBound Double
- The upper limit of the integration interval.
Return Value
DoubleAn approximation of the definite integral of integrand from lowerBound to upperBound.
Usage Note
In Visual Basic and C#, you can call this method as an instance method on any object of type Func<Double, Double>. When you use instance method syntax to call this method, omit the first parameter. For more information, see Extension Methods (Visual Basic) or Extension Methods (C# Programming Guide).Integrate(Func<Double, Double, Double>, Interval<Double>, Interval<Double>)
Numerically integrates a function of two variables over a rectangular region.
public static double Integrate(
this Func<double, double, double> integrand,
Interval<double> xInterval,
Interval<double> yInterval
)
Parameters
- integrand Func<Double, Double, Double>
- A delegate that represents a function of two variables that specifies the function to integrate.
- xInterval Interval<Double>
- The limits of the integration region in the X direction.
- yInterval Interval<Double>
- The limits of the integration region in the Y direction.
Return Value
DoubleAn approximation of the definite integral of integrand over a rectangle spanned by xInterval in the X direction, and yInterval in the Y direction.
Usage Note
In Visual Basic and C#, you can call this method as an instance method on any object of type Func<Double, Double, Double>. When you use instance method syntax to call this method, omit the first parameter. For more information, see Extension Methods (Visual Basic) or Extension Methods (C# Programming Guide).Integrate(Func<Double, Double, Double>, Double, Double, Double, Double)
Numerically integrates a function of two variables over a rectangular region.
public static double Integrate(
this Func<double, double, double> integrand,
double xLowerBound,
double xUpperBound,
double yLowerBound,
double yUpperBound
)
Parameters
- integrand Func<Double, Double, Double>
- A delegate that represents a function of two variables that specifies the function to integrate.
- xLowerBound Double
- The lower limit of the integration region in the X direction.
- xUpperBound Double
- The upper limit of the integration region in the X direction.
- yLowerBound Double
- The lower limit of the integration region in the Y direction.
- yUpperBound Double
- The upper limit of the integration region in the Y direction.
Return Value
DoubleAn approximation of the definite integral of integrand over a rectangle from xLowerBound to xUpperBound in the X direction, and from yLowerBound to yUpperBound in the Y direction.